

ENERGY & SUSTAINABILITY REPORT ROYAL BRUNSWICK PARK

2548-MKP-SW-ZZ-RP-1001-P6

ENERGY & SUSTAINABILITY REPORT

for the development at Royal Brunswick Park on behalf of Comer Group

MKPCONSULTANTS

ENGINEERING EXCELLENCE

ISSUE REFERENCE	ISSUE DATE	STATUS
P6	Aug 2021	Preliminary Issue

EXECUTIVE SUMMARY

The Energy Strategy has been produced by MKP Consultants Ltd on behalf of Comer Homes Ltd to support a hybrid planning application ('the Application') submitted to the London Borough of Barnet (LBB) for Royal Brunswick Park, North London Business Park, Brunswick Park Road, London, N11 1GN ('the Development').

Proposals are for the phased comprehensive redevelopment of the North London Business Park to deliver a residential-led mixed use development. The detailed element comprises up to 466 residential units in five blocks reaching 9 storeys, the provision of a 5 form entry secondary school, a gymnasium, a multi-use sports pitch and associated changing facilities and improvements to open space and transport infrastructure, including improvements to the access from Brunswick Park Road and; the outline element comprises up to 1,967 additional residential units in buildings ranging from three to twelve storeys, up to 7,148 sqm of non-residential floor space (use Class E) and 20,250sqm of open space. Associated site preparation/enabling work, transport infrastructure and junction work, landscaping and car parking.

By adopting principles of sustainable design, and through the incorporation of efficient, Low- or Zero-Carbon (LZC) technologies, the Applicant successfully delivers London Plan (2021) planning policies:

- 5.2 Minimising carbon dioxide emissions;
- 5.3 Sustainable design and construction;
- 5.4 Retrofitting;
- 5.5 Decentralised energy networks;
- 5.6 Decentralised energy in development proposals;
- 5.7 Renewable energy;
- 5.8 Innovative energy technologies; and
- 5.9 Overheating and cooling.

The Energy Strategy is written in accordance with Energy Assessment Guidance, Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018.) The Applicant is committed to a design approach that aligns with the principles of the energy hierarchy. The Development will achieve a total reduction in regulated CO2 emissions of 52% over the Target Emission Rate (TER) Approved Document Part L (AD L) 2013 through BE LEAN, BE CLEAN and BE GREEN measures and successfully delivers the target 35% minimum on-site reduction in regulated CO2 emissions over AD L 2013 for domestic and non-domestic elements of the Development separately.

SAP10 emission factors are adopted within the Energy Strategy in order to estimate, more accurately, the predicted energy performance and actual carbon emissions associated with the development scheme post-construction. This is in accordance with the recommendations of Energy Assessment Guidance (October 2018).

BE LEAN: Passive design measures have been included and lead to a reduction in regulated CO2 emissions over the AD L 2013 TER and Target Fabric Energy Efficiency (TFEE) standard. A combination of BE LEAN measures including: energy-efficient building fabric; insulation to all heat loss floors, walls and roofs; double-glazed windows; low-energy lighting; and efficient ventilation systems all contribute to an enhancement in energy performance equal to a 52% reduction in regulated CO2 emissions over AD L 2013.

A dynamic simulation model and CIBSE TM59 overheating assessment has been completed in parallel with the Energy Strategy to ensure the BE LEAN design approach adopted within this report successfully mitigates for overheating risk through passive measures (Source: TM59 Overheating Assessment for Brunswick Park, produced by MKP Consultants Ltd, July 2021).

BE CLEAN: The feasibility of supplying decentralised energy to the Development has been assessed in accordance with the heating hierarchy. A site-wide heat network, led by ASHPs and supplemented

by high-efficiency gas boilers will serve all domestic units providing a source of decentralised energy to future occupants and users of the Development.

BE GREEN: Opportunities to maximise Low- and Zero-Carbon (LZC) technologies have been assessed and all options reviewed for their practical, financial and technical viability in relation to the Development scheme. ASHPs form a central component of the heat network and are described within this report under the BE CLEAN stage of the energy hierarchy. The GLA's advice is to assess their impact on the energy assessment as a LZC technology under BE GREEN measures. ASHPs will deliver an estimated 40% reduction in regulated CO2 emissions over AD L 2013.

The Development achieves the zero-carbon homes standard in full through a carbon-offset payment which offsets the shortfall in regulated CO2-emissions reduction for the new dwellings. The total CO2 emissions to offset for Royal Brunswick Park, have been calculated as: 44,178 t.CO2/30 years. Based on a carbon price of £95 t.CO2/yr over a 30-year period, this is equivalent to a cash-in-lieu contribution of: £4,196,877.

The results of the energy assessment, based on SAP10 emission factors, and the impact of BE LEAN, BE CLEAN and BE GREEN measures in terms of how the Applicant delivers their commitment to the energy hierarchy, is illustrated in Table 2 and Table 3 below.

Table 1. Domestic carbon emission savings.

Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings				
	Regulated domestic carb	on dioxide savings		
	Tonnes CO2 per annum	% reduction		
Savings from energy demand reduction	328.3	11%		
Savings from heat network / CHP	2727.6	89%		
Savings from renewable energy	-1,472.6	-48%		
Cumulative on site savings	1584.0	52%		
Carbon shortfall	1472.6	-		
Cumulative savings for offset payment 44,178 tonnes CO ₂				
Cash-in-lieu contributions	contributions £4,196,877			

Contents

Exec	utive Summaryi
1.	Introduction1
2.	The Application Site
3.	Methodology
3.1	Assessment Methods3
3.1.1	Domestic
3.1.2	SAP10 emission factors
4.	The Development Baseline
5.	Be Lean: Reduced Energy Demand4
5.1	Be Lean: Carbon Emissions Reduction5
5.2	Total Energy Demand6
6.	Be Clean: Heating Infrastructure
6.1	Area- Wide Heat Network6
6.2	Site-Wide heat Network8
6.3	Phasing and Layout9
6.4	Be Clean Carbon Emissions Reduction9
7.	Be Green: Low- and Zero-Carbon Technologies9
7.1	Air Source heat Pumps10
7.2	Be Green Carbon Emissions Reduction11
8.	Site-Wide Results
8.1	Domestic12
8.2	Whoe Site Total (Domestic)13
9.	Conculsions and Recommendations14
9.1	Transition to Operational Zero Carbon By 203015
10.	Appendices16
10.1	Appendix 1: List Of Abbreviations16
10.2	Appendix 2: Energy Assessment Results17
10.3	Appendix 3: Sample Sap Reports20
10.4	Appendix 4 Ashp Layout50
10.5	Energy Centre Location51
10.6	Appendix 5: Assessment Of Low- And Zero-Carbon Technologies52
10.7	Appendix 6: Manufacturers Information For Ashp56

1. INTRODUCTION

This Energy Strategy has been produced by MKP Consultants Ltd on behalf of Comer Homes ('the Applicant').

It will set out the climate change mitigation measures incorporated by the Applicant as part of the Development at Royal Brunswick Park, Barnet ('the Development') and is written in support of a Hybrid planning application ('the Application') submitted to the London Borough of Barnet (LBB).

It will demonstrate the energy-strategy approach adopted by the Applicant to comply with:

- i) National Planning Policy Framework.
- ii) The London Plan (Greater London Authority, 2021) planning policies on climate change mitigation measures to:
 - Achieve a minimum 35% on-site reduction in CO2 emissions over Approved Document Part L (AD L) 2013, based on SAP10 emission factors, for all major, domestic and
 - non-domestic development separately by implementing principles of the energy hierarchy.
 - Achieve the zero-carbon homes standard in full and, where this cannot be achieved on site, a commitment to offset the shortfall in CO2 emissions through a carbon-offset payment.
 - Evaluate the viability of heat networks in accordance with the following hierarchy:
 - 1) Connection to an area wide heat network.
 - 2) Communal heating system:
 - Site-wide heat network
 - Building-level heating system
 - 3) Individual heating system.
 - Reduce the potential for overheating through the incorporation of passive design measures in accordance with the cooling hierarchy.
 - Maximise opportunities for the installation of renewable energy technologies.
- iii) Energy Assessment Guidance, Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018).
- iv) Local planning policy requirements for the LBB set out in Barnet's Local Plan, Core Strategy (September 2012), Policy CS13: Ensuring the efficient use of natural resources.

This Energy Strategy describes demand-reduction measures, energy-efficiency measures and Lowand Zero-Carbon (LZC) technologies in relation to how the Applicant meets the objectives of the energy hierarchy: BE LEAN, BE CLEAN and BE GREEN.

Figure 1. The energy hierarchy

2. THE APPLICATION SITE

The site occupies circa 17 hectares of brownfield land in a predominantly residential area, located to the west of Southgate and to the south of East Barnet. The site is a pre-developed site, with circa 13 hectares of the site being occupied by grasslands, an attenuation lake and unplanned vegetative cover.

The site is located in the London Borough of Barnet, approximately 8 miles to the north-west of Central London. The site lies slightly outside of the circular route prescribed by the A406 North Circular Road.

Figure 2. Brunswick Park, Barnet.

A full planning application is submitted to the LBB for the comprehensive phased redevelopment of existing commercial site comprising phased demolition of existing offices and construction of a mixed use development. The proposed development consists of a mixed use residential development of 2,428 dwellings plus a 5 Form of Entry secondary school (1,050 pupils) at the existing North London Business Park site in the London Borough of Barnet. There is no strategic commercial use planned for the site. The Detail Planning Area (Phase 1) is proposed to accommodate 461 new residential units, with a mixture of houses, duplexes, and apartments. The Detail Planning Area (Phase 1) will also include the 5th Form of Entry secondary school, which will replace the existing temporary school building on site accommodating the St Andrew the Apostle School.

All associated site works, landscaped areas (including Brunswick Lakeside Park), transport infrastructure and car parking required to support the delivery of the Detail Planning Area (Phase 1) is included in the Detail Planning Application. The Outline Planning Area (Phases 2-5) is proposed to accommodate the balance of the 2,428 residential units proposed for the site.

The Outline Planning Area (Phases 2-5) will also accommodate a small number of non-residential uses. These ancillary uses are intended to compliment and support the planned residential community on the site and include Café/Retail Use, Community Use and Incubator Office Use.

The design framework for all associated site works, landscaped areas (including New Brunswick Park), transport infrastructure and car parking required to support the delivery of the Outline Planning Area (Phases 2-5) is described in Plus Architecture's Parameter Plans and Design Principles Document, which accompanied the Outline Planning Area (Phases 2 to 5).

3. METHODOLOGY

The purpose of the Energy Strategy is to demonstrate the Applicant's commitment to delivering the principles of the energy hierarchy. The Energy Strategy has been assessed against, and presented, to align with the following steps:

The Baseline: The Development's baseline energy demand, the Target Emission Rate (TER), has been calculated to establish the minimum on-site standard for compliance with AD L 2013, based on SAP10 emission factors. The baseline has been calculated using a mains gas heating system.

BE LEAN: The Development's Building Emission Rate (BER) and Dwelling Emission Rate (DER) has been calculated to explain how the Applicant's design specification has led to a reduced energy demand and an improved fabric-energy efficiency. The better the design of the building fabric in terms of, for example, insulation, air tightness and orientation to maximise solar gain, the less energy required to heat the dwellings and so the better the fabric energy efficiency.

BE CLEAN: The potential to provide energy to the Development in an efficient way, by either connecting to a District Heat Network (DHN) or installing a site-wide, low-carbon energy supply, has been assessed and viability concluded.

BE GREEN: Low- and Zero-Carbon (LZC) technologies have been assessed for their suitability and viability in relation to the Development. Solutions have been put forward for the Development and the resulting regulated CO2 emission savings presented.

Carbon Offset: Where it has been demonstrated that the energy target for the Development cannot be met onsite then any shortfall in regulated CO2 emissions reduction has been offset through a cash-in-lieu payment and mechanism agreed in consultation with the Local Planning Authority.

3.1 ASSESSMENT METHODS

At each stage of the energy hierarchy, the estimated energy performance of the Development has been calculated using the following assessment methodologies.

3.1.1 DOMESTIC

SAP 2012 methodology has been used to calculate energy demand for seven sample dwellings representing a cross-section of proposed, 1, 2, 3 and 4 bedroom flats included in proposals for Royal Brunswick Park.

Sample SAPs have been completed to reflect the scheme on 2nd August 2021 and reviewed at design freeze to ensure these accurately reflect the fixed scheme. The sample SAPs provide the basis for estimating energy performance pre-planning and to inform viability.

SAP calculates the regulated energy demand associated with hot water, space heating and fixed electrical items. Part L1A is used for the purposes of the new build energy assessment.

The cumulative floor areas for representative, sample dwellings have been used to estimate the TER and DER for new dwellings within the Development proposals.

3.1.2 SAP10 EMISSION FACTORS

In order to more accurately reflect the carbon emissions associated with the expected operation of the proposed Development, and to demonstrate the way in which the Applicant will meet planning policy

targets, outputs from the energy assessment in SAP 2012 have been manually converted using SAP10 emission factors. Refer to Appendix for SAP10 worksheets.

4. THE DEVELOPMENT BASELINE

In order to measure the effectiveness of BE LEAN, demand-reduction measures, it is first necessary to calculate the baseline energy demand for the Development and this has been done using SAP 2012 and is based on SAP10 emission factors. This is also referred to as the Target Emission Rate (TER.)

The resulting AD L 2013 TER for Royal Brunswick Park, has been calculated using Part L model designs which have been applied to the Applicant's Development details. The TER, or baseline energy demand, represents the maximum regulated CO2 emissions that are permitted for the Development in order to comply with AD L 2013.

The resulting TER has been calculated as 2,631 t.CO2/yr. To ensure compliance with AD L 2013, regulated CO2 emissions should not exceed this figure.

Refer to Appendix for SAP10 worksheets and Appendix 4 for sample TER and DER worksheets.

5. BE LEAN: REDUCED ENERGY DEMAND

The mixed-use development scheme at Royal Brunswick Park, will achieve a high-quality, sustainable design by integrating the following passive and active design measures to reduce energy demand:

- Energy-efficient building fabric and insulation to all heat loss floors, walls and roofs.
- High-efficiency double-glazed windows throughout.
- Quality of build will be confirmed by achieving good air-tightness results throughout.
- Efficient-building services including high-efficiency ventilation systems.
- Low-energy lighting throughout the buildings.

Throughout the design process, the Applicant has developed a fabric specification that takes into account multiple issues and environmental considerations. These include: building form and massing and its impact on energy efficiency; noise impact; air quality; sunlight and daylight; and the internal overheating of dwellings. The Energy Strategy represents a design approach that achieves a balance and takes into account each of these objectives.

Refer to the BE LEAN design specification in detail in Table 1 below.

Table 2. BE LEAN design specification.

Element	BE LEAN Design Specification
Ground Floor U-Value (W/m ² .K)	0.15
External Wall U-Value (W/m ² .K)	0.18
Party Wall U-Value (W/m ² .K)	0 (fully filled and sealed)
Wall (Adj unheated) U-Value (W/m ² .K)	0.35
Wall (Adj corridor) U-Value (W/m ² .K)	0.20
Roof U-Value (W/m ² .K)	0.13-0.20
Thermal Mass	Defaults
Glazing U-Value (W/m ² .K)	1.4 (double-glazed units)
Glazing G-Value	0.5
	0.4 on all floors of south and west-facing
	facades in B9, B10, B11 as mitigation for
	overheating.
Door U-Value (W/m ² .K)	1.0
Space Heating	Mains Gas Boilers

	Community Gas Boilers, 89.5% efficiency for domestic units and 91% efficiency for non-
	domesticunits. ¹
Heating Controls	Standard Heating System Controls
Domestic Hot Water	Domestic: from Main Heating System Non- domestic: Electric, instant at point of use
Ventilation	All dwellings will be fitted with energy-efficient ventilation systems System 4: MVHR is specified in all dwellings, Nuaire (MRXBOX)
	1.5W/l/s;HR efficiency 75%
Cooling	None
Design Air Permeability	Domestic: 4.0
Low Energy Lighting	Domestic: 100% Low-e
	Non-domestic: LEDs throughout with average powerdensity of 5W/sqm
Thermal Bridging	Bespoke Psi Values The Applicant will carry out a further review of thermalbridging post-planning to minimise heat loss through thermal bridges.

¹ Where development proposals include a communal heat network, a community heating system with gas boilers is assumed for BE LEAN calculations. This is in accordance with Energy Assessment Guidance. Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018.)

5.1 BE LEAN: CARBON EMISSIONS REDUCTION

The Applicant's design specification and intended demand-reduction measures for the Development have been modelled using the same methodology as before. This allows us to assess the effectiveness of BE LEAN measures as a percentage reduction in CO2 emissions over the baseline for both domestic and non-domestic elements of the Development separately.

Refer to Appendix For SAP10 worksheets sample TER and DER worksheets.

By incorporating sustainable design, the Applicant will reduce regulated CO2 emissions over AD L 2013 elements of the Development. These reductions are illustrated in Table 2 below.

Table 3. BE LEAN regulated CO2 emissions.

	Total regulated	Regulated CO2	Percentage
	emissions	emissions savings	saving
Detailed element:	Tonnes CO ₂	per annum	%
ADL 2013 Baseline: Domestic	3056.5		
BE LEAN: Domestic	2727.6	328.9	11%
Total	2315	328.9	11%

5.2 TOTAL ENERGY DEMAND

Total energy demand for the Development is set out in Table 3 below.

Ruilding	Energy demand following energy efficiency measures (MWh/year)						
Liso	Space	Hot	Lighting	Auxiliany	Cooling	Unregulated	Unregulated
Use	heating	water	Lighting	Auxiliary	Cooling	electricity	gas
Domestic	5279	5846	860	817	0	0	n/a

Table4. Energy demand for the Development.

The total Part L Fabric Energy Efficiency Standard (FEES) is provided for the residential element of the Development as a whole and set out in Table 4 below.

Table 5: Total energy demand for domestic units.

	Target Fabric Energy Efficiency	Design Fabric Energy Efficiency	Improvement
Residential element:	MWh/year		%
Development total	49.55	43.36	12%

6. BE CLEAN: HEATING INFRASTRUCTURE

Steps have been taken by the Applicant to reduce the energy demand of the Development through BE LEAN measures.

The next step in the energy hierarchy is to consider how the remaining energy demand can be met and whether there is the potential for this to be done through the mechanism of establishing and/or linking up with existing or planned District Heat Network (DHN). This is assessed in line with planning policy 5.6 of the London Plan (2021) and the requirements of Energy Assessment Guidance, Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018.)

To ensure compliance with the energy hierarchy, the potential to supply energy efficiently to the Development and further reduce regulated CO2 emissions through BE CLEAN measures, has been evaluated. This has been done with attention to the following hierarchy for selecting an energy system:

- 1. Connection to an area wide heat network.
- 2. Communal heating system:
 - Site-wide heat network
 - Building-level heating system
- 3. Individual heating system.

6.1 AREA- WIDE HEAT NETWORK

The London Heat Map has been consulted to establish whether the Development lies within proximity of an existing or proposed area-wide DHN. London Plan policy states that development should seek to connect to existing or planned district energy networks. If it is not possible to link to an existing network, the feasibility of CHP should be considered on a site-wide basis, connecting different uses and/or group of buildings or an individual building.

- The following images contain extracts from the 'London Heat Map' and show:
- The site (black dot in centre of map), current heat networks (shown in red) and proposed networks (none at present)
- Areas of potential heat network opportunity (coloured contour map)

This indicates that the site is not located near to any existing or proposed heat networks. However, it is located close to areas identified as an 'opportunity area' for the implementation of a heat network.

Contact has been made with the local authority and other stakeholders and there are indeed no proposed heat networks that could be extended to connect to the site Figure 5. London Heat Map showing current heat networks in red:

London Heat Map showing areas of potential opportunity:

From the London Plan Heat Map, it can be clearly demonstrated that the development is not within an area that will be supplied by a district heating network in future. development in areas where an area-wide heat network is not proposed, and which is not within an HNPA.

As Royal Brunswick Park, falls outside a HPA and as there are no plans for an area-wide heat network within close proximity to the Development, the Applicant focuses on a site-wide, communal heating strategy.

The Applicant also focuses on the most suitable site-wide heat network solution for compliance with planning policy targets, whilst adopting SAP10 emission factors. This is in accordance with the GLA's Energy Assessment Guidance (October, 2018).

6.2 SITE-WIDE HEAT NETWORK

A site-wide heat network, served by a low-carbon generation heat source, will form the central component of the Energy Strategy at Royal Brunswick Park.

A hybrid heat network, led by Air Source Heat Pump (ASHPs) and supplemented by gas- fired boilers, will serve all new dwellings. An ASHP and gas-fired boiler hybrid solution has been selected for its financial, practical and technical feasibility in terms of:

- Space and load requirements of ASHP units on the roofs.
- The positioning of ASHP units inset from the edge of the roof to allow for the appropriate screening for acoustics mitigation/visual improvement.
- Supply and maintenance/replacement cost of ASHP units.
- Cost of energy to the homeowner.
- Carbon emission reductions in SAP10.

Details of this system are set out below.

Table 6. Heat network overview.

Heating Infrastructure	Detail
Heat Demand Met:	
Air Source Heat Pump (ASHP)	80%
Gas Boilers	20%
ASHP:	
Heat Pump Efficiency	COP 3.15
Number of Units	40
Positioning	Phase 1
Gas Boiler Efficiency	91.5%
Heat Losses	20% in line with CIBSE CP1

The site-wide heat network will incorporate ASHP units as the leading heat source. The heat network currently includes 40 Mitsubishi Ecodan CAHV units, roof-mounted at a central location on the roof of Block D in Phase 1. Whilst the energy strategy records a specific make and model of ASHP, it should be noted that the technical specification and exact ASHP selection for the Development may be subject to change pre-construction.

Gas boilers are retained as a supplementary heat source to provide the minimum temperature requirements. The gas boilers will remain within the Energy Centre located at Level 0 along with associated plant for the ASHPs.

To align with Energy Assessment Guidance, Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018) gas boilers will be specified to meet air quality standards and NOx emission limits of <40mgNOx/kWh. Prior to occupation, boiler emissions will be tested to ensure compliance with these limits.

The heat network will be designed in accordance with the District Heating Manual for London and CIBSE Heat Networks Code of Practice (CP1): the focus being to ensure that common design and key principles are adopted in the specification in the early stages. Steps will be taken to:

• Reduce network losses by keeping the length of pipework to a minimum; and

Insulating pipework to ensure heat loss is minimised with CP1 Best Practice Target of <20% being achieved. 20% heat losses have been assumed for the purposes of the report, however, losses with be designed to be significantly improved upon this. This will be achieved through appropriate use of lagging pipework, minimising lengths of pipework runs, and utilising low temperature water distribution.

The heat network will be designed to align with the future-proofing standards of CIBSE Heat Networks Code of Practice (CP1) as follows:

- Allowance for future expansion, e.g. design in valved and capped tees.
- Allowance for future changes in network operating temperature and the impact on pipework sizes, heat exchangers etc.
- Allowance for future low carbon heat sources.

Any future external, larger heat network system will be able to adapt to the site at the end of the central energy plant life. Or it may function in tandem based on future viability. The Energy Centre is positioned close to the Development boundary allowing a network to expand in the future, subject to viability.

6.3 PHASING AND LAYOUT

The construction of a site-wide heat network will be phased according to the phasing of the Development. As aforementioned, the total 40 ASHPs for the scheme will be located on the roof of Block D in Phase 1 as centralised plant

6.4 BE CLEAN CARBON EMISSIONS REDUCTION

The Applicant will provide a sustainable, hybrid heat network as a centralised and site-wide solution for the space heating and hot water of all new dwellings within the Development proposals.

Further to the advice of the GLA, ASHPs are accounted for under the Be Green calculation and described in Section 7 of the Energy Strategy. There are therefore no reductions recorded for BE CLEAN measures.

	Total regulated emissions	Regulated CO ₂ emissions savings	Percentage saving
Detailed element:	Tonnes CO2	2 per annum	%
ADL 2013 Baseline: Domestic	3056.5		
BE LEAN: Domestic	2727.6	328.9	11%
BE CLEAN: Domestic	0	0	0%
Total	2727.6	328.9	11%

Table 7. BE CLEAN regulated CO2 emissions.

7. BE GREEN: LOW- AND ZERO-CARBON TECHNOLOGIES

In line with planning policy of the London Plan (2021) and Energy Assessment Guidance, Greater London Authority guidance on preparing energy assessments as part of planning applications (October 2018), the Applicant seeks to maximise opportunities for incorporating Low- and Zero-Carbon (LZC) technologies as part of their Energy Strategy for the Development.

In accordance with the energy hierarchy, the Applicant has adopted BE LEAN and BE CLEAN measures as a priority for the scheme and demonstrates a 10% reduction in regulated CO2 emissions over the AD L 2013 baseline, using SAP10 emission factors, for domestic and non-domestic areas.

LZC technologies have been assessed for their viability as a component of a complementary heating and cooling strategy for the Development. A detailed review of LZC technologies is provided in Appendix 5. The viability of Solar PV as a LZC option is set out in Appendix 5.

The Applicant's adopted strategy for LZC technologies are an integral component of the engineered solution for the Development scheme's heat network.

7.1 AIR SOURCE HEAT PUMPS

ASHPs will be adopted as the LZC technology for Brunswick Park, and provide the leading heat source in a hybrid heat network solution serving all domestic units as a source of decentralised energy to future occupants and users of the Development.

An ASHP system has been specified comprising Mitsubishi CAHV units which are connected to form a multiple unit system. The hybrid system plant requirements. Details of this system are set out overleaf.

Table 8. Heat network overview.

Heating Infrastructure	Detail
Heat Demand Met:	
Air Source Heat Pump (ASHP)	80%
Gas Boilers	20%
ASHP:	
Heat Pump Efficiency	COP 3.15
Number of Units	40
Positioning	Block D
Gas Boiler Efficiency	91.5%
Heat Losses	20% in line with CIBSE CP1
Heat pump total capacity (kWth)	1680

The CAHV units included within the design of a heat network are capable of providing water flow temperatures of up to 70 degC without boost heaters however Mitsubishi have confirmed that the optimum temperature range for the units at 50degC to 60degC. There is one size unit capable of generating 42kW, each unit is: $1710 \text{ H} \times 1978 \text{ W} \times 759 \text{ D}$

The total annual heat consumption estimated for the development is presented in the table below and is estimated to be 4,809,673kWh.

Predicted Annual Heat Demand	Predicted Annual Heat Demand
Total Heat Consumption by Development (kWh)	4,809,673
Heat Production by ASHPs (kWh) @ 80%	3,847,738
Heat production by Gas Boilers (kWh) @20%	961,934
Consumption by Gas boiler at n=91.5% (kWh)	1,051,294

To maximise the efficiency of the Air Source Heat Pumps, a lower set point temperature has been utilised. The heat pumps will work in association with the communal gas boilers. The ASHP system prefers lower temperatures with smaller temperature differential. The proposed hydraulic arrangement considers the use of ASHP units to pre-heat the return temperature of the district heating system before entering the gas fired boilers.

Given that the nominal variable return temperature is expected from the secondary system. The SCOP of the ASHP has been based on raising the return temperature to the worst-case design value for the purpose of this assessment.

Manufacturer datasheets showing performance under these conditions have been provided within Appendix 11. Calculations are based on BS EN14511 testing methods, which includes defrost.

With the exception of the communal gas boiler system, no additional technology is required for hot water top-up.

The heating system has been designed in accordance with Code of Practice and industry standards including:

- Heat Networks Code of Practice for the UK, CP1 2015
- Danish Standards DS439 Code of Practice

The table below highlights the proposed district heating network operating temperature for LTHW system.

Service:	Parameter:
Air Source Heat Pump Set Points	50° C Flow (Variable)
	Nominal variable return
LTHW Primary Flow & Return Temperatures	75°CFlow
	50°C Return (Variable)
LTHW Secondary Flow & Return Temperatures	70°C Flow
	Nominal Variable Return
	22-25°C

In addition to the roof area required for the installation of ASHP units, associated plant and buffer vessels will be installed.

Manufacturers information on the heating system has been provided within the appendices providing details of efficiency under test conditions.

Whilst the energy strategy records a specific make and model of ASHP, it should be noted that the technical specification and exact ASHP selected for the Development may be subject to change preconstruction.

The approved Air Source Heat Pumps will be implemented and if there are any changes to specification or layouts, this shall be agreed in writing with the Local Planning Authority.

Where the Air Source Heat Pump does not achieve expected performance proposed within the Application, the applicant will take the necessary steps to resolve this.

7.2 BE GREEN CARBON EMISSIONS REDUCTION

The cumulative impact of Be Green measures for Royal Brunswick Park, is illustrated in Table 8 below.

	Total regulated emissions	Regulated CO ₂ emissions savings	Percentage saving
Detailed element:	Tonnes CO2	%	
ADL 2013 Baseline: Domestic	3,056.5		
BE LEAN: Domestic	2,727.6	328.9	11
BE CLEAN: Domestic	2,727.6	0	
BE GREEN: Domestic	1,472.6	1255.1	41
Total	1472.6	1584	52%

Table 9. BE GREEN regulated CO2 emissions.

8. SITE-WIDE RESULTS

By adopting principles of sustainable design, and through the incorporation of efficient, LZC technologies, the Applicant demonstrates their commitment to London Plan (2021) planning policies.

The Applicant is committed to a design approach that aligns with the principles of the energy hierarchy and will achieve a total reduction in regulated CO2 emissions of 52% over the Target Emission Rate (TER) Approved Document Part L (AD L) 2013 through BE LEAN, BE CLEAN and BE GREEN measures, through the adoption of SAP10 emission factors, and successfully delivers the target 35% minimum on-site reduction in regulated CO2 emissions over AD L 2013 for domestic and non-domestic elements of the Development separately.

The way in which the Applicant achieves the CO2 emissions reduction for domestic and non- domestic elements of the Development, at each stage of the energy hierarchy, is summarised here. Results are provided for both SAP10 emission factors and SAP2012 emission factors for comparison purposes.

8.1 DOMESTIC

The regulated CO2 emissions at each stage of the energy hierarchy and percentage savings for domestic buildings using SAP10 emission factors and SAP2012 emission factors are set out in Tables 9-12 below.

Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings												
	Regulated domestic carb	oon dioxide savings										
	Tonnes CO2 per annum	% reduction										
Savings from energy demand reduction	328.9	11%										
Savings from heat network	0	0%										
Savings from renewable energy	1255.1	41%										
Cumulative on site savings	1584	52%										
Carbon shortfall	1257.5	-										
Cumulative savings for offset payment	Cumulative savings for offset payment 44,177.7 tonnes CO ₂											
Cash-in-lieu contributions £4,196,877												

Table 10. Domestic, regulated CO2-emission savings, SAP10 emission factors.

Table 11. Domestic, regulated CO2-emission savings, SAP2012 emission factors.

Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings											
	Regulated domestic carb	oon dioxide savings									
Tonnes CO2 per annum % reduction											
Savings from energy demand reduction	160.8	5%									
Savings from heat network	0	0%									
Savings from renewable energy	555	16.15%									
Cumulative on site savings	715	21%									
Carbon shortfall	2720.1	-									
Cumulative savings for offset payment	81,603 tonn	es CO ₂									
Cash-in-lieu contributions £7,752,241											

8.2 WHOE SITE TOTAL (DOMESTIC)

Table 112. Site-wide regulated CO₂ emissions and savings, SAP10 emission factors.

Carbon diox	kide emissions after each	stage of the Energy Hiera	rchy for site
	Total regulated emissions	CO ₂ savings	Percentage savings
	Tonnes CO:	%	
Part L 2013 Baseline	3,0256.5	-	-
Be Lean	2727.6	329	11%
Be Clean	2727.6	0	0%
Be Green	1,472.6	1255	41%
Total		1584	52%
		CO ₂ savings offset	
		Tonnes CO ₂	
Offset		44,4178	

Table 13. Site-wide regulated CO2 emissions and savings, SAP2012 emission factors.

Carbon dio	kide emissions after each	stage of the Energy Hiera	rchy for site
	Total regulated emissions	CO ₂ savings	Percentage savings
	Tonnes CO	%	
Part L 2013 Baseline	3,435.2	-	
Be Lean	3,274.4	160.8	5%
Be Clean	3,274.4	0	0%
Be Green	2,720.1	554.2	16%
Total		715	21%
		CO ₂ savings offset	
		Tonnes CO ₂	
Offset		81,603	

The Development achieves the zero-carbon homes standard in full through a carbon-offset payment which offsets the shortfall in regulated CO2-emissions reduction for the new dwellings. The total CO2 emissions to offset for Brunswick Park, have been calculated as: 44,177.7 t.CO2/30 years. Based on a carbon price of £95 t.CO2/yr over a 30-year period, this is equivalent to a cash-in-lieu contribution of: \pounds 4,196,877.

The Mayor's Housing Standard's Viability Assessment assumes a carbon offset price of £95 per tonne of carbon dioxide for a period of 30 years which is referred to in: Energy Assessment Guidance, Greater

London Authority guidance on preparing energy assessments as part of planning applications (October 2018.)

9. CONCULSIONS AND RECOMMENDATIONS

The Applicant demonstrates their commitment to delivering climate-change mitigation measures at Brunswick Park and aligns their design approach with the principles of the energy hierarchy.

The Development will achieve a total reduction in regulated CO2 emissions of 52% over the Target Emission Rate (TER) Approved Document Part L (AD L) 2013 through BE LEAN, BE CLEAN and BE GREEN measures and successfully delivers the target 35% minimum on- site reduction in regulated CO2 emissions over AD L 2013 for domestic elements of the Development.

SAP10 emission factors are adopted within the Energy Strategy in order to estimate, more accurately, the predicted energy performance and actual carbon emissions associated with the development scheme post-construction. This is in accordance with the recommendations of Energy Assessment Guidance (October 2018).

BE LEAN: Passive design measures have been included and lead to a reduction in regulated CO2 emissions over the AD L 2013 TER and Target Fabric Energy Efficiency (TFEE) standard. A combination of BE LEAN measures including: energy-efficient building fabric; insulation to all heat loss floors, walls and roofs; double-glazed windows; low-energy lighting; and efficient ventilation systems all contribute to an enhancement in energy performance equal to a 12% reduction in regulated CO2 emissions over AD L 2013.

A dynamic simulation model and CIBSE TM59 overheating assessment has been completed in parallel with the Energy Strategy to ensure the BE LEAN design approach adopted within this report successfully mitigates for overheating risk through passive and mechanical measures (Source: Overheating Assessment for Brunswick Park, July 2021).

BE CLEAN: The feasibility of supplying decentralised energy to the Development has been assessed in accordance with the heating hierarchy. A site-wide heat network, led by ASHPs and supplemented by high-efficiency gas boilers will serve all domestic units and, providing a source of decentralised energy to future occupants and users of the Development.

BE GREEN: Opportunities to maximise Low- and Zero-Carbon (LZC) technologies have been assessed and all options reviewed for their practical, financial and technical viability in relation to the Development scheme. ASHPs form a central component of the heat network and are described within this report under the BE CLEAN stage of the energy hierarchy. The GLA's advice is to assess their impact on the energy assessment as a LZC technology under BE GREEN measures. ASHPs will deliver an estimated 41% reduction in regulated CO2 emissions over AD L 2013.

This reduction in emissions through renewable technology is in excess of the 20% reduction required from renewables, and as ASHPs are defined as an LZC, no further reductions are required.

PV has been investigated for its viability, but as the roof areas will be utilised for other measures such as amenity space, multiple ASHPs to serve the heating and hot water, green roofs to contribute towards urban greening as well as surface water run-off management and noise attenuation measures, it has been concluded that there is no viable roof area available for the installation of Solar PV.

The Development achieves the zero-carbon homes standard in full through a carbon-offset payment which offsets the shortfall in regulated CO2-emissions reduction for the new dwellings. The total CO2 emissions to offset for Brunswick Park, have been calculated as: 44,178 t.CO2/30 years. Based on a carbon price of £95 t.CO2/yr over a 30-year period, this is equivalent to a cash-in-lieu contribution of: £4,196,877.

9.1 TRANSITION TO OPERATIONAL ZERO CARBON BY 2030

Royal Brunswick Park has been designed with consideration to the Comer Group long-term vision to achieve operational zero carbon in their new developments by 2030. The following measures within the adopted Energy Strategy contribute towards this vision:

- A fabric-first approach is being taken by Comer Homes to demonstrate how demand for energy is being reduced over and above the Part L Building Regulations baseline.
- A communal heat network solution is being adopted which includes a hybrid heat pump/communal gas boiler arrangement. Heat pumps are a leading technology in the decarbonisation of heat networks.
- An important aspect of being able to plan towards a target for operational zero carbon is the ability for a Development to adopt and use new technologies. One of the benefits of a hybrid heat pump/communal gas model at Royal Brunswick Park is that
- an energy centre/plant space is retained for gas boilers and future-proofs the scheme for transition across to new LZC technologies as these come on stream.
- Sustainable design and heat infrastructure are important stages in developing wellperforming, energy-efficient homes. The performance of a new home, in terms of operational carbon emission savings, is also influenced by how an occupier then uses their property, i.e. their demand for space heating and electricity. Smart technologies continue to evolve and offer occupants the potential for greater control over energy consumption.

The current Energy Strategy therefore demonstrates compliance with current planning policy whilst also building in capacity for future decarbonisation through the replacement of plant with new and tested LZC technologies.

10. APPENDICES

10.1 APPENDIX 1: LIST OF ABBREVIATIONS

AD L 2013	Approved Document Part L of Buildings Regulations 2013
ASHP	Air Source Heat Pump
BER	Building Emission Rate
CHP	Combined Heat & Power
DER	Dwelling Emission Rate
DHN	District Heat Network
DHW	Domestic Hot Water
ESCO	Energy Services Company
FEES	Fabric Energy Efficiency Standard
GSHP	Ground Source Heat Pump
LPA	Local Planning Authority
PV	Photovoltaics
SAP	Standard Assessment Procedure
SBEM	Simplified Building Energy Model
TER	Target Emission Rate

10.2 APPENDIX 2: ENERGY ASSESSMENT RESULTS.

SAP10 Worksheets, Baseline. Domestic.

The applicant of	should complete all the light blue cells including information on the modellied units, the area per unit, the number of units, the baseline energy consumption figures, the TER and the TF C ENERGY CONSUMPTION AND CO ₂ ANALYSIS											the TFEE.	SAP 313 CO, PERFORMANCE SAF 13 S CO, PERFORMANCE								DEMAND					
				VALIDATE	ON CHECK		REGULATED EN	ERGY CONSUM	TION PER UNIT	(Whip.e.) - TEP	WORKSHEET	5		REGULA	TED CO. EMISSIONS	PER UNIT (kgCO, p.a.	a .				REGULATED CO	. EMISSIONS PER U	INIT			Fabric Energ
Unit identifier (e.g. plot number, dwelling type etc.)	Model total floor area (m²)	Number of units	Total area represented by model (m ²)	Calculated TER 2012 (kgCO ₂ / m ²)	TER Worksheet TER 2012 (kgCO ₂ / m ²)	t Space Heating	Fuel type Space Heating	Domestic Hot Water	Fuel type Domestic Hot Water	Lighting	Autiliary	Cooling	Space Heating	Domestic Hot Water	Lighting	Aaxiiary	Cooling	2012 CO, emissions (kgCO ₂ p.a.)	Space Heating	Domestic Het Water	Lighting	Auxiliary	Cooling	SAP 10.0 CO, emissions (kgCO ₂ p.a.)	Calculated TER SAP 10.0 (kgCO ₂ / m ²)	(FEE) Target Fabri Energy Efficiency (TFEE) (KWhim ²)
	TER Worksheet (Row 4)	r.		5	TER Worksheet (Row 273)	TER Worksheet (Row 211)		TER Worksheet (Row 219)		TER Worksheet (Row 232)	TER Worksheet (Row 231)	N/A														
Jacob Galer Jacob Jacob	3066 154.72 5066	313 1411 9 495	3000 1181126 461.5 250767	14.6 18.6 18.0	144 166 109 180	18794 18554 185058 180567	Adfund feis Adfund feis Adfund feis Adfund feis	194.42 198.48 2004.8 2075.98	Antara cas Antara Cas Patra Gas	791.723 347.83 858 235.26	27 27 27 27		985 755 304	845 566 449	100 316 122	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		L800 L901 994	907 735 296	600 565 439	11 142 55	17 17 17		1475 1489 1489 804	127 167 159	41 56, 38 99,
Sum NON-DOM	19978A ESTIC EN	2429 ERGY CO	198,800 NSUMPTIO	17.3 N AND CO ₂	ANALYSIS	7,624,017	N/A	5,703,041	NUA.	D61,139	181,669	0	1,562,162	1,231,857	446,231	54,276	6 6 (2019) MP or	3,433,766	1,616,933	1,127,633	200,646	42,324	6	1056,547	15.4	49.55
Building Use	Nodel Area (m ²)	Number of units	Total area represented by model (m*)	Uslavit TER 2012 (kgCG ₂ /m ³)	DR CHICK BRUKK TER 2012 (kgCC),/m ³	ROOL Spice Neutropy (White' p.s.)	And Bankrov Co	Ngunying ay Dometric Har Water (Kohyar p.a.)	Liab Uild (within Fuel type Demestic Hot Walter	ing μag (1998 - 1966 Lagning (MWn n° μ.a.)	gooding and a	Cooling (kettern*p.a.)	REGULTATO INDI	cri Costavillerioni (PTUELTYPE (AMAge Equipment 0.519 JacCo./ MAY	(7 ±) <u>1</u> 1 1 , 3 0 0 , 1 1 , 1 1 , 1 , 1 , 1 1 , 1 1 , 1	E BRUKL NP or	- SUICSYFILE 2017 COL (hgCOL p.a.)	REGLA Netural Ges 0.219 LoCO.AVE	TEO ENERGY CONSUME Grid Eleverating 0.233 koč0-kVih	Tick BY URL Y	(White p. 4.) - TER	190.4L	REGULATED SAP10.0 CO. emissions (RefCO, p.a.)	Co, Leitischen BRURL TER SAPHo (qCCG, (m ²)	
Sum SITE-WIDE EN	0 ERGY CONSU	0 JMPTION AND	0 CO, ANALYSIS	0.0	1.00	0	NA	0	NA	0	0	0	0	0	•	NIA	NA	0	0	•	0	NA	NIA	0	0.0	
Use		Total Area (n	9 -	Calculated TER 2012 (kgCO, / m²)		Space Heating	-	REGULATE Domestic Hot Water	D ENERGY CONS	Lighting	Autiliary	Cooling						REGULATED CO, EMISSIONS 2012 CO, emissions					_	REGULATED PEF SAP 10.0 CO, emissions	CO ₂ EMISSIONS EUNIT Calculated TER SAP 10.0	
Sum		198,860		17.3		7,694,917	÷1×	(kiWh p.a.) 6,703,041	*	(AVM p. 4.) 861,139	(MINT (D.M.) 181,650	(www.p.a.)			_	_		(kgCO, p.a.) 3,435,156				_		(kgCO ₂ p.a.) 3,056,541	(kgCO ₂ / m ²) 15.4	

SAP10 Worksheets, BE LEAN. Domestic.

SAP10 Worksheets, BE GREEN. Domestic, Part 1.

10.3 APPENDIX 3: SAMPLE SAP REPORTS.

BE LEAN WORKSHEETS

DER WorkSheet: New dwelling design stage

User Details:													
Assessor Name: Software Name:	Matthew Haskell Stroma FSAP 20	12	Stroma Software	Numk e Vers	ber: sion:		STRO Versio	006210 n: 1.0.5.8					
Address -													
Address :	1. Overall dwelling dimensions:												
T. Overall dwelling dime	NSIONS.	Aro	a(m²)			abt(m)		Volumo(m ³)					
Ground floor			30.66 (1a	a) x	AV. Hei 2	2.7	(2a) =	217.78	(3a)				
Total floor area TFA = (1a													
Dwelling volume	217.78	(5)											
2. Ventilation rate:													
Number of chimneys	main setting of the setting the setting the setting the setting the setting setting the setting setting the setting se	secondary heating 0 +	other 0	= [total 0	x 4	10 =	m ³ per hour	(6a)				
Number of open flues		0 +	0	= [0	x 2	20 =	0	 (6b)				
Number of intermittent far	าร				0	x 1	0 =	0	(7a)				
Number of passive vents					0	x 1	0 =	0	(7b)				
Number of flueless gas fir	es				0	x 4	0 =	0	(7c)				
Air changes per hour													
Infiltration due to chimney If a pressurisation test has be	vs, flues and fans = ((6a)+(6b)+(7a)+(7b)+(ded, proceed to (17),	(7c) = otherwise con	ntinue fro	0 m (9) to ((16)	+ (5) =	0	(8)				
Number of storeys in th Additional infiltration	e dwelling (ns)					[(9)-	1]x0.1 =	0 0	(9) (10)				
Structural infiltration: 0. if both types of wall are pro- deducting areas of openin	25 for steel or timbe esent, use the value corre gs); if equal user 0.35	r frame or 0.35 fo	r masonry (ter wall area (a	constru ïafter	uction		ĺ	0	(11)				
If suspended wooden fl	oor, enter 0.2 (unse	aled) or 0.1 (seale	ed), else en	nter 0				0	(12)				
If no draught lobby, ent	er 0.05, else enter 0							0	(13)				
Window infiltration	and doors draught	sinpped	0 25 - [0 2 x ((14) <u>→</u> 10	001 -			0					
Infiltration rate			(8) + (10) + (10)	(11) + (12	2) + (13) +	+ (15) =	l	0	(10)				
Air permeability value.	a50. expressed in cu	ibic metres per he	our per sau	are me	etre of e	nvelope	area	4					
If based on air permeabili	ty value, then $(18) = [$	(17) ÷ 20]+(8), otherw	ise (18) = (16))				0.2	(18)				
Air permeability value applies	s if a pressurisation test h	as been done or a de	gree air perme	eability is	s being us	sed	L						
Number of sides sheltered	d							3	(19)				
Shelter factor			(20) = 1 - [0.0]	075 x (19	9)] =			0.78	(20)				
Infiltration rate incorporati	ng shelter factor		(21) = (18) x	(20) =				0.16	(21)				
Infiltration rate modified fo	or monthly wind spee	ed in the second s			0.1								
Jan Feb	Mar Apr May	y Jun Jul	Aug	Sep	Oct	Nov	Dec						
Nonthly average wind speed from Table 7													
(22)m= 5.1 5	4.9 4.4 4.3	3.8 3.8	3.1	4	4.3	4.5	4./						
Wind Factor (22a)m = (22	2)m ÷ 4			T			_						
(22a)m= 1.27 1.25 1	1.23 1.1 1.08	0.95 0.95	0.92	1	1.08	1.12	1.18						

Adjusted in	filtration r	ate (allow	ing for sl	nelter an	d wind s	speed) =	(21a) x	(22a)m				_		
0.2	2 0.19	0.19	0.17	0.17	0.15	0.15	0.14	0.16	0.17	0.17	0.18			
Calculate e	ffective a	ir change	rate for t	he appli	cable ca	se								
lf exhaust a	ir heat num	n using App	endix N (2	(23a) – (23a	a) x Emv (e	equation (1	N5)) othe	rwise (23h) – (23a)				.5	$\int_{(22h)}^{(23a)}$
If balanced	with heat re	p doing r pp	riency in %	allowing f	for in-use f	actor (fron	n Table 4b) –) = (20u)				.5	
) = (2)	26)m i (*	00h) [1 (220)	77	.35	(23c)
							HR) (248	a)m = (22)	20)m + (. 0 20	230) × [1 - (230)) ÷ 100]]		(24a)
(24a)III= 0.3	0.31	0.3	0.20	0.20	0.20	0.20	0.20	0.27	0.20	0.29	0.5]		(2-14)
					neat rec		VIV) (240 T	p)m = (22)	2D)m + (2 	230)		1		(24b)
c) If whole house extract ventilation or positive input ventilation from outside														(240)
c) If whole house extract ventilation or positive input ventilation from outside if $(22b)m < 0.5 \times (23b)$, then $(24c) = (23b)$; otherwise $(24c) = (22b)m + 0.5 \times (23b)$														
(24c)m = 0 0 0 0 0 0 0 0 0 0													(24c)	
		tion or wh					n from l		0	Ū	Ů]		(= : ;)
d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + [(22b)m ² x 0.5]														
(24d)m= 0	0		0	0	0	0	0	0	0	0	0]		(24d)
Effective	air chang	e rate - e	nter (24a) or (24t) or (24	c) or (24	d) in bo	x (25)				1		
(25)m= 0.3	1 0.31	0.3	0.28	0.28	0.26	0.26	0.26	0.27	0.28	0.29	0.3]		(25)
			1	I	1	1	I	1	I	I	I	J		
3. Heat losses and heat loss parameter:														
ELEMEN	are	oss a (m²)	Openin rr	lgs 1 ²	Net Ar A ,r	rea m²	U-vai W/m2	ue !K	AXU (W/I	<)	k-value kJ/m²·	e K	A X kJ/ł	.к К
Doors		~ /			2.1	x	1	= [2.1	<i>,</i>				(26)
Windows Type 1 $1 \le 2.1$ $1 = 2.1$														(27)
Windows T	vpe 2				10.34	 	/[1/(1.4)+	0.041 =	13 72	=				(27)
Walls Type)	• • •	26.0	1	24.20				2.40					
		0.3	20.9	<u>'</u>	21.3		0.10		0.42			╡╏		(20)
		1.42	2.1		59.32	<u>2</u> ×	0.16	= [9.49					
	bi elemen	ts, m-			109.7	3		r		—		r		(31) T
Party wall					13.12	2 X	0	=	0	ļ				(32)
Party floor					80.66	6								(32a)
Party ceiling	g				80.66	6								(32b)
* for windows	and roof wii	ndows, use e	effective wi	ndow U-va	alue calcul	lated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	is given in	n paragrapl	h 3.2		
Fabric beat	loss W//	$(-S(\Delta x))$		is anu par	uuons		(26)(30)) + (32) =				50		7(33)
Heat canac	ity $Cm - 1$	ς (Δ v k)	. 0)				()(00)	((28)	(30) + (30)	(32a)	(320) -		.69	(33)
Thermal m	ny Oni – '	ootor (TM	P – Cm	- TFΔ) ir	n k l/m²k			((20)	tive Value	· Medium	(020) -	103	97.92](34)] ₍₂₅₎
For design as	sessments i	where the de	etails of the	construct	ion are no	t known ni	recisely the	indicative	values of	TMP in T	ahle 1f	2	50	_(33)
can be used in	stead of a	detailed calc	culation.	00110111001		i nilowi pi	colocity and	, maioative						
Thermal bri	dges : S	(L x Y) ca	Iculated	using Ap	pendix l	K						17	'.03	(36)
if details of the	ermal bridgiı	ng are not kr	nown (36) =	= 0.05 x (3	1)									_
Total fabric	heat loss	1						(33) +	(36) =			67	.72	(37)
Ventilation	heat loss	calculated	d monthl	y	i	i		(38)m	= 0.33 × (25)m x (5)	1		
Ja	n Fet) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-		
(38)m= 22.3	34 22.06	21.79	20.39	20.11	18.72	18.72	18.44	19.28	20.11	20.67	21.23]		(38)
Heat transf	er coeffici	ent, W/K						(39)m	= (37) + (3	38)m		_		
(39)m= 90.0	6 89.78	89.5	88.11	87.83	86.44	86.44	86.16	87	87.83	88.39	88.95			_
												1		Lac

Stroma FSAP 2012 Version: 1.0.5.8 (SAP 9.92) - http://www.stroma.com

Average = Sum(39)_{1...12} /12= $88.0_{Page 2} \Phi^{(39)}$

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.12	1.11	1.11	1.09	1.09	1.07	1.07	1.07	1.08	1.09	1.1	1.1		
Numb			nth (Tab						,	Average =	Sum(40)1.	12 /12=	1.09	(40)
NUMBE		Feb	Mar		May	lun	6.1	Δυα	Sen	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31 31	30	31	30	31		(41)
(+1)	01	20			01	00	01		00	01	00	01		()
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF	ied occu A > 13.9 A £ 13.9	upancy, 9, N = 1 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13	2. .9)	48		(42)
Annua Reduce not more	l averag the annua e that 125	e hot wa al average litres per j	ater usag hot water person pe	ge in litre usage by r day (all w	es per da 5% if the d vater use, l	ay Vd,av Iwelling is hot and co	erage = designed ld)	(25 x N) to achieve	+ 36 a water us	se target o	92 92	.99		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres per I	r day for ea I	ach month I	Vd,m = fa I	ctor from	Table 1c x I	(43)					I	
(44)m=	102.29	98.57	94.85	91.13	87.41	83.69	83.69	87.41	91.13	94.85	98.57	102.29	4445.05	
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600) kWh/mor	otal = Su oth (see Ta	ables 1b, 1	= c, 1d)	1115.85	(44)
(45)m=	151.69	132.67	136.9	119.35	114.52	98.82	91.57	105.08	106.34	123.93	135.28	146.9		
$Total = Sum(45)_{112} = $												1463.06	(45)	
(46)m=	22.75	19.9	20.54	17.9	17.18	14.82	13.74	15.76	15.95	18.59	20.29	22.04		(46)
Water	storage	loss:												
Storag	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If com	munity h vise if no	eating a	and no ta	ank in dw er (this ir	velling, e ocludes i	nter 110 nstantar) litres in	(47) mbi boil	ers) ente	er 'O' in ((47)			
Water	storage	loss:	not wat			notantai					()			
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
Energy	/ lost fro	m water	⁻ storage	e, kWh/ye	ear			(48) x (49)) =		1	50		(50)
b) If m Hot wa	nanufact	urer's de	eclared (cylinder l rom Tabl	oss fact	or is not h/litre/da	known:					01	l	(51)
If com	munity h	leating s	ee secti	on 4.3		1,1110,00	xy)				0.	01		(01)
Volum	e factor	from Ta	ble 2a								0.	93		(52)
Tempe	erature f	actor fro	m Table	2b							0	.6		(53)
Energy	/ lost fro	m water	⁻ storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	1.	08		(54)
Enter	(50) or ((54) in (5	55)								1.	08		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	33.6	30.34	33.6	32.51	33.6	32.51	33.6	33.6	32.51	33.6	32.51	33.6		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where ((H11) is fro	m Append	ix H	
(57)m=	33.6	30.34	33.6	32.51	33.6	32.51	33.6	33.6	32.51	33.6	32.51	33.6		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(moo						solar wat		ng and a				22.20	l	(50)
(59)W=	23.20	21.01	23.20	22.51	23.20	22.51	23.20	23.20	22.51	23.20	22.51	23.20		(59)

Combi	loss ca	alculated	for each	n month	(61)m =	(60)) ÷ 365	5 × (41)	m						
(61)m=	0	0	0	0	0		0	0	0	0	0	0	0]	(61)
Total h	eat req	uired for	water h	eating ca	alculated	l for	each	month	(62)m =	= 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	208.55	184.02	193.76	174.38	171.38	15	3.85	148.43	161.94	161.36	180.78	190.3	203.76		(62)
Solar DI	-IW input	calculated	using App	bendix G o	r Appendix	н (r	negative	e quantity	r) (enter '()' if no sola	r contribu	tion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	and/or	WWHRS	ap	plies, s	see Ap	pendix	G)				_	
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Output	from w	vater hea	iter												
(64)m=	208.55	184.02	193.76	174.38	171.38	15	3.85	148.43	161.94	161.36	180.78	190.3	203.76		
			•						Out	put from w	ater heate	er (annual)₁	12	2132.51	(64)
Heat g	ains fro	om water	heating	, kWh/m	onth 0.2	5´[0.85 ×	‹ (45)m	+ (61)r	n] + 0.8 >	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	95.92	85.2	91.01	83.7	83.56	76	6.88	75.93	80.43	79.38	86.69	89	94.33		(65)
inclu	ide (57))m in cal	culation	of (65)m	only if c	ylin	der is	in the c	dwelling	or hot w	vater is f	rom com	munity h	neating	
5. Int	ternal g	ains (see	e Table (5 and 5a):				-				-	-	
Metab	olic gai	ns (Table	•5) Wa	tts	/										
motab	Jan	Feb	Mar	Apr	May	J	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m=	123.76	123.76	123.76	123.76	123.76	12	3.76	123.76	123.76	123.76	123.76	123.76	123.76		(66)
Lightin	g gains	(calcula	ted in A	ppendix	L, equat	ion	L9 or	L9a), a	lso see	Table 5				1	
(67)m=	19.69	17.48	14.22	10.77	8.05	6	.79	7.34	9.54	12.81	16.26	18.98	20.23]	(67)
Applia	Appliances gains (calculated in Appendix L. equation L13 or L13a), also see Table 5														
(68)m=	220.81	223.11	217.33	205.04	189.52	17	4.94	165.2	162.9	168.68	180.97	196.49	211.07]	(68)
Cookir		L s (calcula	L ated in A	I	L equat	L tion	L	or I 15a)	also s	L ee Table	L			1	
(69)m=	35.38	35.38	35.38	35.38	35.38	35	5.38	35.38	35.38	35.38	35.38	35.38	35.38	1	(69)
Pump		l Ins gains	(Table	1 5a)			I							1	
(70)m=					0		0	0	0	0	0	0	0	1	(70)
		Vaporatio		l tive valu	os) (Tab		<u> </u>	•	•		Ů		Ů	J	
(71)m-	-00 01				-00 01		γ) 9.01 [-99.01	-00 01	-99.01	-99.01	-99.01	-00 01	1	(71)
Wotor	hooting			00.01	00.01		0.01	00.01	00.01	00.01	00.01	00.01	00.01	J	(***
		1 yains (1		116.25	112 22	10	6 77	102.06	109.1	110.24	116.52	122.61	126 70	1	(72)
(72)III=	120.93	120.78	122.32	110.25	112.52	10	(66)	102.00	100.1	(60)m ((70)m L ((123.01)	120.79	J	(12)
10tal 1	nterna	I gains =	- 	202.10	270.02	24		224 72	240.67	251.96	272.00	200.2	410.00	1	(73)
(73)III=	429.50	427.5	414	392.19	370.02	34	0.04	334.73	340.07	331.00	373.00	399.2	410.22		(13)
Solar o	ains are	calculated	using sola	ar flux from	Table 6a	and a	associa	ted equa	tions to c	onvert to th	ne applica	ble orientat	ion.		
Orient	ation:	Access F	-actor	Area			Flux	iou oquu		a	ie appliea	FF		Gains	
onona		Table 6d	aotor	m²			Tabl	e 6a	٦	able 6b	Т	able 6c		(W)	
East	0.9x	0.77	x	16	56	хΓ	19	.64	x	0.63	ר × ר	0.7	=	99.4	7(76)
East	0.9x	0.77		10	35	х Г	10	.64		0.63		0.7		62 12	_``'](76)
East	0.9x	0.77		16	56	хГ	19.64				0.7		194 44	_`_'](76)	
East	0.9x	0.77		10	35	х Г	38.42			0.63		0.7		121 53	ן`י' (76)
East	0.9x	0.77		16	56	х Г	50 50	27		0.63		0.7	─ ┤ _	320.22	ן` ⁻ ′](76)
	0.57	0.77	^	10.	30	^ L	03	.21	^	0.05	^ L	0.7	_	320.22	(10)

-

East	0.9x	0.77		x	10.3	35	x	6	3.27	x	0.63	x	0.7		=	200.14	(76)
East	0.9x	0.77		x	16.	56	x	9	2.28	×	0.63	x	0.7		=	467.03	(76)
East	0.9x	0.77		x	10.3	35	x	9	2.28	x	0.63	x	0.7		=	291.89	(76)
East	0.9x	0.77		x	16.	56	x	1	13.09	×	0.63	x	0.7		=	572.36	(76)
East	0.9x	0.77		x	10.3	35	x	1	13.09	×	0.63	x	0.7		=	357.72	(76)
East	0.9x	0.77		x	16.	56	x	1	15.77	x	0.63	x	0.7		=	585.91	(76)
East	0.9x	0.77		x	10.3	35	x	1	15.77	×	0.63	x	0.7		=	366.19	(76)
East	0.9x	0.77		x	16.	56	x	1	10.22	x	0.63	x	0.7		=	557.81	(76)
East	0.9x	0.77		x	10.3	35	x	1	10.22	x	0.63	x	0.7		=	348.63	(76)
East	0.9x	0.77		x	16.	56	x	9	4.68	×	0.63	x	0.7		=	479.15	(76)
East	0.9x	0.77		x	10.3	35	x	9	4.68	×	0.63	x	0.7		=	299.47	(76)
East	0.9x	0.77		x	16.	56	x	7	3.59	×	0.63	x	0.7		=	372.43	(76)
East	0.9x	0.77		x	10.3	35	x	7	3.59	×	0.63	x	0.7		=	232.77	(76)
East	0.9x	0.77		x	16.	56	x	4	5.59	×	0.63	x	0.7		=	230.72	(76)
East	0.9x	0.77		x	10.3	35	x	4	5.59	×	0.63	x	0.7		=	144.2	(76)
East	0.9x	0.77		x	16.	56	x	2	4.49	×	0.63	x	0.7		=	123.94	(76)
East	0.9x	0.77		x	10.3	35	x	2	4.49	×	0.63	x	0.7		=	77.46	(76)
East	0.9x	0.77		x	16.	56	x	1	6.15	×	0.63	x	0.7		=	81.74	(76)
East	0.9x	0.77		x	10.3	35	x	1	6.15	×	0.63	x	0.7		=	51.09	(76)
Solar g	ains in	watts, ca	alcula	ted	for eacl	n mont	h			(83)m	n = Sum(74)m	ı(82)n	n				
(83)m=	161.52	315.97	520.3	36	758.92	930.08	3	952.1	906.44	778	.62 605.2	374.9	201.4	132	2.83		(83)
Total g	ains – i	nternal a	ind so	blar	(84)m =	: (73)m) + (83)m	, watts	r						I	(5.1)
(84)m=	591.08	743.47	934.:	36	1151.1	1300.1	1	300.74	1241.17	1119	9.29 957.06	748.8	600.6	55	1.05		(84)
7. Me	an inter	nal temp	eratu	ire (heating	seaso	n)										
Temp	erature	during h	eatin	g pe	eriods ir	the liv	/ing	area	from Tab	ole 9	, Th1 (°C)					21	(85)
Utilisa	ation fac	tor for g	ains f	or li	ving are	a, h1,ı	m (s	ee Ta	ble 9a)							l	
	Jan	Feb	Ма	ar	Apr	Мау	/	Jun	Jul	A	ug Sep	00	t Nov		Dec		
(86)m=	1	0.98	0.94	1	0.81	0.61		0.42	0.31	0.3	85 0.61	0.9	0.99		1		(86)
Mean	interna	l temper	ature	in li	iving are	ea T1 (follo	ow ste	ps 3 to 7	7 in T	able 9c)	_		_			
(87)m=	19.93	20.16	20.5	1	20.84	20.97		21	21	2	1 20.98	20.7	3 20.25	19	.89		(87)
Temp	erature	during h	eatin	g pe	eriods ir	rest o	of dv	velling	from Ta	able 9	9, Th2 (°C)						
(88)m=	19.99	19.99	19.9	9	20.01	20.01	:	20.02	20.02	20.	03 20.02	20.0	1 20	2	20		(88)
Utilisa	ation fac	ctor for g	ains f	or r	est of d	velling	, h2	,m (se	e Table	9a)		_		_			
(89)m=	0.99	0.98	0.92	2	0.76	0.55		0.36	0.24	0.2	28 0.53	0.88	3 0.98		1		(89)
Mean	interna	l temper	ature	in t	he rest	of dwe	llinc	1 T2 (fe	ollow ste	eps 3	to 7 in Tal	ole 9c)					

(90)m=	18.57	18.91	19.4	19.84	19.98	20.02	20.02	20.03	20	19.72	19.06	18.52		(90)
									1	fLA = Livin	g area ÷ (4	4) =	0.41	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m=19.1319.4319.8620.2520.3920.4320.4320.4120.1419.5519.09

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(92)

(93)m=	19.13	19.43	19.86	20.25	20.39	20.43	20.43	20.43	20.41	20.14	19.55	19.09		(93)
8. Sp	ace hea	ting requ	uirement	1										
Set T the ut	i to the r ilisation	mean int factor fo	ernal ter or gains	mperatu using Ta	re obtair able 9a	ied at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.99	0.98	0.92	0.78	0.57	0.39	0.27	0.31	0.56	0.88	0.98	0.99		(94)
Usefu	I gains,	hmGm ,	W = (94	4)m x (84	4)m	-	_	-	-	-	_			
(95)m=	586.09	725.33	861.43	892.61	743.35	501.55	330.67	346.7	535.9	661.32	588.81	547.66		(95)
Month	nly aver	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m : -	x [(93)m	– (96)m]				
(97)m=	1335.82	1304.65	1195.83	1000.19	763.29	503.54	330.89	347.16	548.6	837.63	1100.64	1324.43		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k\	Nh/mont	th = 0.02	24 x [(97])m – (95 I)m] x (4 ⁻	1)m			
(98)m=	557.81	389.3	248.79	77.46	14.84	0	0	0	0	131.17	368.52	577.92		-
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2365.79	(98)
Space	e heatin	g require	ement in	kWh/m²	?/year								29.33	(99)
9b. En	ergy rec	uiremer	nts – Cor	mmunity	heating	scheme)							-
This pa	art is use	ed for sp	ace hea	ting, spa	ace cooli	ing or wa	ater heat	ting prov	ided by	a comm	unity sch	neme.		
Fractio	n of spa	ace heat	from se	condary	/supplen	nentary l	heating ((Table 1	1) '0' if n	one	-		0	(301)
Fractio	n of spa	ace heat	from co	mmunity	v system	1 – (301	1) =						1	(302)
The com	nmunity so	cheme may	y obtain he	eat from se	everal sour	rces. The p	orocedure	allows for	CHP and	up to four o	other heat	sources; ti	ne latter	
includes	boilers, h	eat pumps	s, geotherr	mal and wa	aste heat f	rom powe	r stations.	See Appel	ndix C.			1		
Fractio	n of hea	at from C	ommun	ity boller	ſS								1	(303a)
Fractio	n of tota	al space	heat fro	m Comn	nunity bo	oilers				(3	02) x (303	a) =	1	(304a)
Factor	for cont	rol and o	charging	method	(Table 4	4c(3)) fo	r commu	unity hea	ating sys	tem			1	(305)
Distrib	ution los	s factor	(Table 1	2c) for a	commun	ity heatii	ng syste	m					1.05	(306)
Space	heating	9											kWh/year	-
Annua	l space	heating	requirem	nent									2365.79	
Space	heat fro	om Comr	nunity b	oilers					(98) x (30	04a) x (30	5) x (306) =	-	2484.08	(307a)
Efficier	ncy of se	econdary	/supple	mentary	heating	system	in % (fro	om Table	e 4a or A	ppendix	E)		0	(308
Space	heating	requirer	ment fro	m secon	dary/sup	oplemen	tary syst	tem	(98) x (30	01) x 100 -	÷ (308) =		0	(309)
Water Annua	heating I water h	j neating r	eauirem	ent									2132.51	1
If DHW	/ from c	ommunit	ty schem	ne: Dilers					(64) x (3)	13a) x (304	5) x (306) -	_	2220.12]](310a)
Floctri		d for hea	nunny bu	ution				0.01	$(0+) \times (0)$	(307e) +	(310a) (- (310e)] -	47.00](313)
Coolin	n Sveter	m Enera	v Efficie	ncy Rati	0			0.01	~ [(007a)	(0070) +	(0100)(47.23 0](314)
Snace	cooling	(if there	is a five		o sveton	n if not e	enter (1)		= (107) <i>-</i> -	(314) –			0	(315)
	stur (an								- (107) -	(014) -			U	
mecha	nical ve	ntilation	na tans v - balanc	within dv ed, extra	veiling (act or po	sitive in	: put from	outside					328.8	(330a)

warm air heating system fans					0	(330b)
pump for solar water heating					0	(330g)
Total electricity for the above, kWh/year	=(3	330a) + (330b) + (3	30g) =	;	328.8	(331)
Energy for lighting (calculated in Appendix L)			3	347.66	(332)
12b. CO2 Emissions – Community heating s	cheme					
	Energy kWh/y	y Emi ear kg (ission factor CO2/kWh	· Emise kg CC	sions)2/year	
CO2 from other sources of space and water Efficiency of heat source 1 (%)	heating (not CHP) If there is CHP using two fuels rep	eat (363) to (366) f	or the second fu	el	91.5	(367a)
CO2 associated with heat source 1	[(307b)+(310b)] x 100	÷ (367b) x	0.22	=	1114.99	(367)
Electrical energy for heat distribution	[(313) x		0.52	=	24.51	(372)
Total CO2 associated with community system	ns (363)(366) -	+ (368)(372)		=	1139.5	(373)
CO2 associated with space heating (second	ary) (309) x		0	=	0	(374)
CO2 associated with water from immersion h	neater or instantaneous heater	(312) x	0.22	=	0	(375)
Total CO2 associated with space and water	heating (373) + (374) -	+ (375) =			1139.5	(376)
CO2 associated with electricity for pumps an	d fans within dwelling (331)) x		0.52	=	170.65	(378)
CO2 associated with electricity for lighting	(332))) x		0.52	=	180.43	(379)
Total CO2, kg/year sum	of (376)(382) =				1490.58	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =				18.48	(384)
El rating (section 14)					84.1	(385)

User Details:	
Assessor Name: Matthew Haskell Stroma Number: STRC	006210
Software Name: Stroma FSAP 2012 Software Version: Version	on: 1.0.5.8
Property Address: 80m2 2B4P MF	
Address :	
1. Overall dwelling dimensions:	
Area(m²) Av. Height(m) Ground floor 80.66 (1a) x 2.7 (2a) =	Volume(m ³) 217.78 (3a)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 80.66 (4)	
Dwelling volume $(3a)+(3c)+(3d)+(3e)+(3n) =$	217.78 (5)
2. Ventilation rate:	
main heatingsecondary heatingothertotalNumber of chimneys 0 + 0 = 0 $x 40$ =	m ³ per hour
Number of open flues $0 + 0 + 0 = 0$ $\times 20 =$	0 (6b)
Number of intermittent fans3× 10 =	30 (7a)
Number of passive vents 0 x 10 =	0 (7b)
Number of flueless gas fires 0 x 40 =	0 (7c)
Air ch	anges per hour
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 30$ \div (5) =	0.14 (8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)	
Number of storeys in the dwelling (ns)	0 (9)
Additional infiltration [(9)-1]x0.1 =	0 (10)
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35	0 (11)
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	0 (12)
If no draught lobby, enter 0.05, else enter 0	0 (13)
Percentage of windows and doors draught stripped	0 (14)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$	0 (15)
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$	0 (16)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area	5 (17)
If based on air permeability value, then $(10) = [(17) \div 20] + (0)$, otherwise $(10) = (10)$	0.39 (18)
Number of sides sheltered	3 (19)
Shelter factor $(20) = 1 - [0.075 \times (19)] =$	0.78 (20)
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$	0.3 (21)
Infiltration rate modified for monthly wind speed	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Monthly average wind speed from Table 7	
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7	
Wind Factor (22a)m = (22)m \div 4	
(220)m 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1. 1.08 1.12 1.18	

Adjust	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m				_	
_	0.38	0.38	0.37	0.33	0.32	0.29	0.29	0.28	0.3	0.32	0.34	0.35		
Calcul	ate effe	ctive air	change	rate for t	he appli	cable ca	se							(220)
lf exh	aust air h	eat pump i	using App	endix N (2	3b) = (23a	i) x Fmv (e	equation (I	N5)) other	wise (23h) = (23a)			0	(238)
lf bala	anced with	n heat reco	overv: effic	iencv in %	allowing f	or in-use fa	actor (fron	n Table 4h) =) = (20u)			0	(230)
a) If	halance	d mech	anicalve	ntilation	with he	at recove	arv (MV/	-IR) (2/1a	()m - (2)	2h)m ⊥ ('	23P) ^ [1 – (23c)	0 .∸ 1001	(230)
a) 11 (24a)m=								0	0			1 - (230)	÷ 100]	(24a)
() b) If	halance	d mech:	l ° anical ve	ntilation	without	heat rec	noverv (N	 /\/) (24b)m – (22	$\frac{1}{2}$	23h)	Ĵ		· · · ·
(24b)m=				0	0				0		0	0		(24b)
() If			tract ver				Ventilatio	n from c		Ů	Ů	Ĵ		· · · ·
0) 11	if (22b)n	0.30 cm	(23b), 1	hen (240	c) = (23b); otherv	vise (24	c) = (22b) m + 0.	.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	n or wh	ole hous	e positiv	/e input	ventilatio	on from l	oft	ļ	!			
,	if (22b)n	n = 1, th	en (24d)	m = (22	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]				
(24d)m=	0.57	0.57	0.57	0.55	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.57	0.57	0.57	0.55	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(25)
3. He	at losse	s and he	eat loss	paramete	er:									
ELEN	/IENT	Gros	SS	Openin	gs	Net Ar	ea	U-valı	le	AXU		k-value	9	AXk
		area	(m²)	ŕ	2	A ,r	n²	W/m2	K	(W/I	K)	kJ/m²∙ł	<	kJ/K
Doors						2.1	x	1	=	2.1				(26)
Windo	ws Type	e 1				11.12	<u>2</u> x1	/[1/(1.4)+	0.04] =	14.74				(27)
Windo	ws Type	92				6.95	x1	/[1/(1.4)+	0.04] =	9.21				(27)
Walls ⁻	Type1	48.3	3	18.0	7	30.23	3 X	0.18	=	5.44				(29)
Walls ⁻	Type2	61.4	12	2.1		59.32	<u>2</u> x	0.18	=	10.68			\neg	(29)
Total a	area of e	lements	, m²			109.7	3							(31)
Party v	wall					13.12	<u>x</u>	0		0				(32)
Party f	loor					80.66	3		เ		i		\exists	(32a)
Party of	ceiling					80.66	5				[\dashv	(32b)
* for win	dows and	roof wind	ows, use e	effective wi	ndow U-va	alue calcul	ated using	formula 1,	/[(1/U-valu	ıe)+0.04] a	L as given in	paragraph	 1 3.2	`
** incluc	le the area	as on both	sides of ir	nternal wal	ls and part	titions								
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				42.18	(33)
Heat c	apacity	Cm = S((A x k)						((28)	(30) + (32	2) + (32a)	(32e) =	16928.32	2 (34)
Therm	al mass	parame	ter (TM	P = Cm ÷	- TFA) in	∩ kJ/m²K			Indica	tive Value	: Medium		250	(35)
For desi can be u	ign assess used inste	sments wh ad of a de	ere the de tailed calc	tails of the ulation.	constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						16.36	(36)
if details	of therma	al bridging	are not kr	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			58.53	(37)
Ventila	ation hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	41.21	41	40.8	39.86	39.68	38.86	38.86	38.71	39.18	39.68	40.04	40.41		(38)
Heat ti	ransfer o	coefficier	nt, W/K	1			1	,	(39)m	= (37) + (3	38)m I		I	
(39)m=	99.74	99.54	99.34	98.39	98.22	97.4	97.4	97.24	97.71	98.22	98.58	98.95		
Stroma	FSAP 201	2 Version:	: 1.0.5.8 (\$	SAP 9.92) ·	http://ww	w.stroma.c	com		1	Average =	Sum(39)	12 /12=	98.3 9 a	<u>ige 2 ∮^{{3}79)</u>

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.24	1.23	1.23	1.22	1.22	1.21	1.21	1.21	1.21	1.22	1.22	1.23		
Numb	ar of day	re in mo	uth (Tab	le 12)		I			,	Average =	Sum(40)1	12 /12=	1.22	(40)
Numb	.lan	Feb	Mar	Apr	May	Jun	.Jul	Αυσ	Sen	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
. ,														
4. Wa	ater heat	ing ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF	ned occu A > 13.9 A £ 13.9	ipancy, 9, N = 1 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.	2. 9)	48		(42)
Annua Reduce not mor	l averag the annua e that 125	e hot wa al average litres per j	ater usag hot water person pe	ge in litre usage by s r day (all w	es per da 5% if the a vater use, l	ay Vd,av Iwelling is hot and co	erage = designed i ld)	(25 x N) to achieve	+ 36 a water us	se target o	92 f	.99		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	102.29	98.57	94.85	91.13	87.41	83.69	83.69	87.41	91.13	94.85	98.57	102.29		_
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)))))))))))))))))))) kWh/mor	Total = Su hth (see Ta	m(44) ₁₁₂ = ables 1b, 10	= c, 1d)	1115.85	(44)
(45)m=	151.69	132.67	136.9	119.35	114.52	98.82	91.57	105.08	106.34	123.93	135.28	146.9		
								.	-	Total = Su	m(45) ₁₁₂ =		1463.06	(45)
lf instan	taneous w	ater heati	ng at point I	t of use (no	hot water	r storage),	enter 0 in	boxes (46)) to (61)					
(46)m= Water	22.75 storage	19.9 loss:	20.54	17.9	17.18	14.82	13.74	15.76	15.95	18.59	20.29	22.04		(46)
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If com	munity h	eating a	ind no ta	ank in dw	velling, e	nter 110	litres in	(47)	oro) onto	or (0) in (47)			
Water	storage	loss:	not wate		iciuues i	1151011101			ers) erne		47)			
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				1.3	39		(48)
Tempe	erature fa	actor fro	m Table	2b							0.	54		(49)
Energy	/ lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =		0.	75		(50)
b) If m Hot wa	nanufact	urer's de age loss	eclared (factor fi	cylinder l rom Tabl	oss fact e 2 (kW	or is not h/litre/da	known: av)					n		(51)
If com	munity h	eating s	ee secti	on 4.3	0 2 (· J /					0		(01)
Volum	e factor	from Ta	ble 2a								(0		(52)
Tempe	erature fa	actor fro	m Table	2b							(0		(53)
Energy	y lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	(0		(54)
Enter	(50) or (54) in (5	95) avvlata dv	(((50)			0.	75		(55)
vvater	storage	loss cal	culated T	for each	month	1		((56)M = (55) × (41)I	m I				
(56)m= If cylinde	23.33 er contains	21.07 dedicate	23.33 d solar sto	22.58 rage, (57)	23.33 m = (56)m	22.58 x [(50) – (23.33 H11)] ÷ (5	23.33 0). else (5	22.58 7)m = (56)	23.33 m where (22.58 H11) is fro	23.33 m Append	ix H	(56)
(57)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(57)
			20.00		20.00	22.00	20.00	20.00	22.00	20.00		20.00		(58)
Primar	y circuit y circuit	loss (ar	nual) fro	for each	ಕು month (59)m = ((58) ÷ 36	65 × (41)	m			U		(00)
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi	loss ca	lculated	for eac	h month	(61)m =	(60) ÷ 30	65 × (41)	m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	198.28	174.75	183.5	164.44	161.12	143.92	138.17	151.68	151.43	170.52	180.37	193.5		(62)
Solar DH	W input	calculated	using Ap	pendix G o	r Appendix	H (negati	ve quantity	r) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	S and/or V	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	198.28	174.75	183.5	164.44	161.12	143.92	138.17	151.68	151.43	170.52	180.37	193.5		
		•						Outp	out from wa	ater heate	r (annual)₁	12	2011.67	(64)
Heat g	ains fro	m water	heating	ı, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	۲ ((46)m	+ (57)m	+ (59)m]	
(65)m=	87.71	77.78	82.8	75.76	75.35	68.93	67.72	72.22	71.43	78.48	81.05	86.12		(65)
inclu	de (57)	m in calo	ulation	of (65)m	only if c	ylinder i	s in the c	dwelling	or hot w	ater is fi	rom com	munity h	leating	
5. Int	ernal g	ains (see	Table	5 and 5a):									
Metabo	olic gair	ns (Table	5) Wa	tts	/									
motab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	123.76	123.76	123.76	123.76	123.76	123.76	123.76	123.76	123.76	123.76	123.76	123.76		(66)
Liahtin	a aains	(calcula	ted in A	 .ppendix	L. equat	on L9 o	r L9a). a	lso see [·]	Table 5	1				
(67)m=	19.68	17.48	14.22	10.76	8.05	6.79	7.34	9.54	12.81	16.26	18.98	20.23		(67)
Applia	nces da	ins (calc	ulated i	n Appen	l dix L equ	uation I	13 or I 1:	3a) also) see Ta	l ble 5				
(68)m=	220.81	223.11	217.33	205.04	189.52	174.94	165.2	162.9	168.68	180.97	196.49	211.07		(68)
Cookin			ted in A	npendix		ion 15	or 15a)		 Do Tablo	5				
(69)m=	35.38	35.38	35.38	35.38	25 38	35.38	35.38	35.38	35.38	35.38	35.38	35.38	l	(69)
Dumpe	and fo		(Table	52)			00.00	00.00	00.00			00100		()
(70)m-				$\frac{3a}{3}$	3	3	3	3	3	3	3	3	l	(70)
							5	0	5		3	0		(10)
	oo o1					1e 5)	00.01	00.01	00.01	00.01	00.01	00.01	l	(71)
(71)11=	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01	-99.01		(71)
vvater	neating	gains (1	able 5)	105.00	404.00	05.74	04.00	07.00	00.04	405.40	440.57	445 75	I	(70)
(72)m=	117.89	115.74	111.28	105.22	101.28	95.74	91.03	97.06	99.21	105.49	112.57	115.75		(12)
Total I	nternal	gains =	405.00	00445		(66)	im + (67)m	+ (68)m -	+ (69)m + ((70)m + (7	1)m + (72)	m	I	(72)
(73)m=	421.52	419.46	405.96	384.15	361.98	340.6	326.69	332.64	343.82	365.85	391.17	410.19		(73)
6. Solar o	ar gain:	S: calculated	ueina eol	ar flux from	Table 6a /	and assoc	iated equa	tions to co	nvert to th	e annlicat	ole orientat	ion		
			actor			Flu	ialeu equa			ie applicat	FE		Gains	
Onerna	-	Table 6d	actor	m ²	l	Tal	ble 6a	Т	able 6b	Т	able 6c		(W)	
East	0.97	0.77		11	12	v 🗖	0.64		0.63		0.7	_	66 75	1(76)
East	0.0	0.77	╡() <u>-</u>		0.64		0.03	╡ᆠ┝	0.7	\dashv	41.70	$1^{(76)}$
Fast	0.97	0.77	╡.		10		9.04		0.03	╡┊┝	0.7		41.72	$1^{(70)}$
Fact	0.9X	0.77					00.42		0.03		0.7		130.57	$\frac{1}{2}$
East	0.9x	0.77	`	6.9	95	× <u>3</u>	88.42		0.63	╡ ^丶 ┝	0.7	=	81.61](76)](76)
East	0.9x	0.77	>	11.	.12	×6	3.27	x	0.63	×	0.7	=	215.03	(76)

East	0.9x	0.77	×	Γ	6.95	5	x	6	3.27	×		0.63	×	0.7		= [134.39	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	9	2.28	x		0.63	×	0.7		= [313.61	(76)
East	0.9x	0.77	×	Ē	6.95	5	x	9	2.28	x		0.63	x	0.7		= [196	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	1.	13.09	x		0.63	x	0.7		= [384.34	(76)
East	0.9x	0.77	×	Γ	6.95	5	x	1'	13.09	x		0.63	x	0.7		= [240.21	(76)
East	0.9x	0.77	×	Ē	11.1	2	x	1'	15.77	x		0.63	x	0.7		= [393.44	(76)
East	0.9x	0.77	×	Γ	6.95	5	x	1.	15.77	x		0.63	x	0.7		= [245.9	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	1.	10.22	x		0.63	×	0.7		= [374.57	(76)
East	0.9x	0.77	×	Ē	6.95	5	x	1'	10.22	x		0.63	x	0.7		= [234.1	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	9	4.68	x		0.63	x	0.7		= [321.75	(76)
East	0.9x	0.77	×	Γ	6.95	5	x	9	4.68	x		0.63	x	0.7		= [201.09	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	7	3.59	x		0.63	x	0.7		= [250.09	(76)
East	0.9x	0.77	×	Γ	6.95	5	x	7	3.59	x		0.63	×	0.7		= [156.3	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	4	5.59	x		0.63	x	0.7		= [154.93	(76)
East	0.9x	0.77	×	Ē	6.95	5	x	4	5.59	x		0.63	x	0.7		= [96.83	(76)
East	0.9x	0.77	×	Γ	11.1	2	x	2	4.49	x		0.63	x	0.7		= [83.22	(76)
East	0.9x	0.77	×	Ē	6.95	5	x	2	4.49	x		0.63	x	0.7		= [52.02	(76)
East	0.9x	0.77	×	Ē	11.1	2	x	1	6.15	x		0.63	x	0.7		= [54.89	(76)
East	0.9x	0.77	×	Γ	6.95	5	x	1	6.15	x		0.63	x	0.7		= [34.31	(76)
	-									-						-		
Solar g	pains in	watts, ca	alculate	d fo	r each	mont	<u>1</u>			(83)m	n = Sur	m(74)m .	(82)m		-			
(83)m=	108.46	212.17	349.42	50	09.61	624.55	6	39.33	608.67	522	.84	406.39	251.76	3 135.24	89.	19		(83)
Total g	jains – i	nternal a	and sola	r (84	4)m =	(73)m	+ (83)m	, watts					-				
(84)m=	529.98	631.64	755.38	89	93.76	986.53	9	79.93	935.36	855	.48	750.21	617.61	526.41	499	.38		(84)
7. Me	an inter	nal temp	perature	(he	eating	seaso	n)											
Temp	erature	during h	neating	oerio	ods in	the liv	ing	area f	from Tab	ole 9	, Th1	(°C)				Γ	21	(85)
Utilisa	ation fac	tor for g	ains for	livir	ng are	a, h1,r	n (s	ее Та	ble 9a)						_			
	Jan	Feb	Mar		Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	D	ес		
(86)m=	1	0.99	0.98	0).92	0.79		0.61	0.45	0.5	51	0.78	0.96	0.99	1			(86)
Mean	interna	l temper	ature in	livir	ng are	a T1 (follo	w ste	ps 3 to 7	7 in T	able	9c)						
(87)m=	19.7	19.88	20.19	2	0.58	20.85	2	20.97	20.99	20.	99	20.9	20.51	20.03	19.	66		(87)
Temp	erature	during h	neating	berio	ods in	rest o	f dw	elling	from Ta	able 9	9, Th2	2 (°C)		·				
(88)m=	19.89	19.89	19.89	1	19.9	19.91	1	9.91	19.91	19.	92	19.91	19.91	19.9	19	.9		(88)
Utilis	ation fac	tor for a	ains for	rest	t of dv	vellina	h2	.m (se	e Table	9a)		Į			-			
(89)m=	1	0.99	0.97	(0.9	0.73	Τ	0.52	0.34	0.	4	0.7	0.94	0.99	1			(89)

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	18.17	18.44	18.89	19.43	19.77	19.89	19.91	19.91	19.84	19.35	18.66	18.12		(90)
					-	-	-	-	f	LA = Livin	g area ÷ (4	4) =	0.41	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 18.8 19.04 19.91 20.22 20.36 20.36 20.28 19.83 19.22 18.8 19.04 19.91 20.22 20.36 20.28 19.83 19.22 18.76 (92)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m=	18.8	19.04	19.43	19.91	20.22	20.34	20.36	20.36	20.28	19.83	19.22	18.76		(93)
8. Spa	ace hea	ting requ	uirement	1										
Set Ti the ut	i to the i ilisation	mean int factor fo	ernal tei or gains	mperatui using Ta	re obtain able 9a	ied at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.99	0.99	0.97	0.9	0.75	0.55	0.39	0.44	0.73	0.94	0.99	1		(94)
Usefu	Il gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	527.1	623.81	729.28	801.13	743.01	542.46	363.81	380.4	545.92	582.67	520.55	497.3		(95)
Month	nly aver	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	1446.28	1406.99	1284.45	1082.91	836.56	559	366.22	384.87	603.44	906.52	1195.11	1440.82		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k\	Nh/mont	th = 0.02	24 x [(97])m – (95)m] x (4 ⁻	1)m			
(98)m=	683.87	526.29	413.05	202.88	69.6	0	0	0	0	240.95	485.68	701.98		-
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	3324.31	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year								41.21	(99)
9a. En	ergy rec	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space	e heatir	ng:												-
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								93.5	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	n, %	-			-		0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ır
Space	e heatin	g require	ement (c	alculate	d above))								
	683.87	526.29	413.05	202.88	69.6	0	0	0	0	240.95	485.68	701.98		
(211)m	n = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)	_	-	_						(211)
	731.41	562.88	441.76	216.99	74.44	0	0	0	0	257.7	519.45	750.78		_
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}		3555.41	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month									-
$= \{[(98)]$)m x (20	J1)]}x1 □	00 ÷ (20	(8)	0	0	0	0	0	0	0	0		
(215)11=	0	0	0	0	0	0	0	U Tota		$\frac{0}{1}$	0	0		1(245)
								Tota	i (Kvvii/yee	ar) =0um(2	- 10) _{15,10} 12		0	(215)
Water	heating) ator haa	tor (oolo	ulated a	hovo)									
Output	198.28	174.75	183.5	164.44	161.12	143.92	138.17	151.68	151.43	170.52	180.37	193.5		
Efficier	ncv of w	ater hea	ter										79.8	(216)
(217)m-	87.85	87 57	86.92	85 38	82 75	79.8	79.8	79.8	79.8	85 74	87 33	87 95	10.0	(217)
		hooting	k\//b/~	nth	02.70	10.0	10.0	10.0	10.0	00.74	01.00	01.00		·-··)
(219)m	n = (64)	m x 100) ÷ (217)	m										
(219)m=	225.7	199.55	211.12	192.61	194.7	180.35	173.15	190.07	189.76	198.89	206.54	220		
I				-				Tota	I = Sum(2	19a) ₁₁₂ =			2382.45	(219)
Annua	I totals									k	Wh/year	,	kWh/year	-
Space	heating	fuel use	ed, main	system	1								3555.41]

Water heating fuel used			[2382.45]
Electricity for pumps, fans and electric keep-hot			•		-
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year	sum of (230a)	(230g) =	[75	(231)
Electricity for lighting			[347.63	(232)
12a. CO2 emissions – Individual heating systems	including micro-CHP				
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	767.97	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	514.61	(264)
Space and water heating	(261) + (262) + (263) + (264) =		[1282.58	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	180.42	(268)
Total CO2, kg/year	sum o	of (265)(271) =	[1501.92	(272)

TER =

(273)

18.62

User Details:													
Assessor Name:	Matthew Haskell			Strom	a Num	ber:		STRO	006210				
Software Name:	Stroma FSAP 20	12		Softwa	are Ver	sion:		Versio	on: 1.0.5.8				
		Р	roperty <i>i</i>	Address:	80m2 2	B4P MF	:						
Address :													
1. Overall dwelling dimer	isions:												
Ground floor			Area 8	a(m²) 0.66	(1a) x	Av. Hei	i ght(m)	(2a) =	217.78	(3a)			
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1	e)+(1n	ı) <u> </u>	0.66	(4)			1					
Dwelling volume		,	, <u> </u>		(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	217.78	(5)			
2. Ventilation rate:													
Number of chimpove	main s heating	secondar heating	у ¬ Г	other	л <u>-</u> г	total		10 -	m ³ per hou	T ₍₀₋₁)			
Number of open flues		0	」 ' L ヿ + ᄃ	0	」 - L ヿ = ୮	0		20 =	0	(6a)			
Number of intermittent fan	s			0		0	x 1	10 =	0	(7a)			
Number of passive vents						0	x 1	10 =	0	(7b)			
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)			
0 x 40 = 0 (7c) Air changes per hour													
Infiltration due to chimney	s flues and fans - (6a)+(6b)+(7	a)+(7b)+(7c) =	Г			· (E) -					
If a pressurisation test has be	en carried out or is inten	ded, proceed	d to (17), c	otherwise d	ontinue fro	0 om (9) to (16)	÷ (5) =	0	(0)			
Number of storeys in the	e dwelling (ns)								0	(9)			
Additional infiltration							[(9)-	1]x0.1 =	0	(10)			
Structural infiltration: 0.2	25 for steel or timbe	r frame or	0.35 for	masonr	y constr	uction			0	(11)			
if both types of wall are pre deducting areas of opening	esent, use the value corre as): if equal user 0.35	esponding to	the greate	er wall area	a (after								
If suspended wooden flo	por, enter 0.2 (unsea	aled) or 0.	1 (seale	d), else	enter 0				0	(12)			
If no draught lobby, ente	er 0.05, else enter 0	,	·	,					0	(13)			
Percentage of windows	and doors draught	stripped							0	(14)			
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)			
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)			
Air permeability value, c	50, expressed in cu	bic metre	s per ho	our per so	quare m	etre of e	nvelope	area	4	(17)			
If based on air permeabilit	y value, then (18) = [(17) ÷ 20]+(8	3), otherwi	se (18) = (16)				0.2	(18)			
Air permeability value applies	if a pressurisation test h	as been don	e or a deg	ree air pei	rmeability i	is being us	sed			_			
Number of sides sheltered	1			(20) – 1 - 1	0 075 v (1	0)1 -			3	(19)			
Sheller lactor				(20) = 1 - [0.075 X (1	9)] =			0.78	(20)			
Infiltration rate incorporation	ng snelter factor			(21) = (10)	(20) =				0.16	(21)			
Inflitration rate modified to	r montnly wind spee	ed	ll	A	0.00	0.4	Nierr	Dec	1				
	viar Apr I iviay	Jun	Jui	Aug	Sep	Oct	INOV	Dec					
Monthly average wind spe	ed from Table 7		2.0	0.7	A	4.0	4 5	4 7	1				
(22)111= 0.1 5 2	4.3 4.4 4.3	3.8	3.8	3.1	4	4.3	4.5	4.7	J				
Wind Factor (22a)m = (22)m ÷ 4								_				
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18					

Adjust	Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m													
	0.2	0.19	0.19	0.17	0.17	0.15	0.15	0.14	0.16	0.17	0.17	0.18		
Calcul	ate effec	ctive air	change	rate for t	he appli	cable ca	se						0.5	(220)
lf exh	aust air h	eat pump i	usina Appe	endix N. (2	3b) = (23a	i) x Fmv (e	equation (N5)) . other	wise (23b) = (23a)			0.5	(23b)
If bal	anced with	heat reco	overv: effic	iencv in %	allowing f	or in-use fa	actor (from	n Table 4h)) =	, (,			0.5	
a) If	halance	d mech	anical ve	ntilation	with he	at recove	arv (MI\/F	-IR) (2/1a	n = (2)	2h)m ⊥ ('	23h) v [·	1 – (23c)	- 1001	(230)
(24a)m=	0.31	0.31		0.28	0.28	0.26	0.26	0.26	0.27	0.28	0.29	0.3	÷ 100]	(24a)
() b) If	halance		anical ve	ntilation	without	heat rec		/\/) (24b	m = (2)	$\frac{1}{2}$	23h)	0.0		· · ·
(24b)m=				0	0				0		0	0		(24b)
() If			tract ver	tilation (or positiv		ventilatio	n from c		Ů	ů			· · ·
0) 11	if (22b)n	0.30 ex	(23b), t	hen (24	c) = (23b)); otherv	vise (24	c) = (22b) m + 0.	.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	n or wh	ole hous	e positiv	/e input v	ventilatio	on from l	oft	ļ	I			
,	if (22b)n	n = 1, th	en (24d)	m = (22	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]	-			
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)	-	-	-		
(25)m=	0.31	0.31	0.3	0.28	0.28	0.26	0.26	0.26	0.27	0.28	0.29	0.3		(25)
3. He	at losse	s and he	eat loss i	paramete	er:									
ELEN	IENT	Gros	SS	Openin	gs	Net Ar	ea	U-valu	le	AXU		k-value	e A	Xk
		area	(m²)	. m	0 1 ²	A ,r	n²	W/m2	K	(W/I	<)	kJ/m²∙ł	K k.	l/K
Doors 2.1 x 1 = 2.1														(26)
Windows Type 1 16.56 $x1/[1/(1.4)+0.04] = 21.95$ (27)														(27)
Windo	ws Type	2				10.35	5 x1	/[1/(1.4)+	0.04] =	13.72				(27)
Walls	Type1	48.3	3	26.9	1	21.39) x	0.16	=	3.42	_ r			(29)
Walls	Type2	61.4	12	2.1		59.32	<u>x</u>	0.16	= [9.49	i F		\neg	(29)
Total a	area of e	lements	, m²			109.73	3		เ					(31)
Party	wall					13.12	2 X	0		0				(32)
Party f	loor					80.66			I		L			(32a)
Party	ceilina					80.66	<u></u>				L L			(32h)
* for win	ndows and	roof wind	ows. use e	effective wi	ndow U-va	alue calcula	, ated using	ı formula 1.	/ī(1/U-valu	ıe)+0.041 a	L Is aiven in	paragraph	 	(020)
** incluc	le the area	as on both	sides of ir	nternal wal	ls and part	titions				,] .	J	1		
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				50.69	(33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	16397.92	(34)
Therm	al mass	parame	ter (TMF	⁻ = Cm ÷	- TFA) ir	∩ kJ/m²K			Indica	tive Value	Medium		250	(35)
For des can be t	ign assess used inste	sments wh ad of a dea	ere the de tailed calc	tails of the ulation.	constructi	ion are not	t known pr	ecisely the	indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						17.03	(36)
if details	s of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								_
Total f	abric he	at loss							(33) +	(36) =			67.72	(37)
Ventila	ation hea	at loss ca	alculateo	l monthly	y				(38)m	= 0.33 × (25)m x (5))	I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	22.34	22.06	21.79	20.39	20.11	18.72	18.72	18.44	19.28	20.11	20.67	21.23		(38)
Heat t	ransfer o	coefficier	nt, W/K					-	(39)m	= (37) + (3	38)m			
(39)m=	90.06	89.78	89.5	88.11	87.83	86.44	86.44	86.16	87	87.83	88.39	88.95		_
Stroma	FSAP 201	2 Version:	: 1.0.5.8 (S	SAP 9.92) ·	- http://ww	w.stroma.c	com			Average =	Sum(39)1	12 /12=	88.0 ∌ age	2 of 3 9)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.12	1.11	1.11	1.09	1.09	1.07	1.07	1.07	1.08	1.09	1.1	1.1		
Numbe	er of dav		nth (Tab	le 12)				!		Average =	Sum(40)1.	.12 /12=	1.09	(40)
Numbe	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Αυα	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
						I	I			<u> </u>				
4. Wa	ater heat	ing ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF	ied occu A > 13.9 A £ 13.9	ipancy, 9, N = 1 9, N = 1	N + 1.76 x	:[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.	2. 9)	48		(42)
Annua Reduce not more	l averag the annua e that 125	e hot wa al average litres per j	ater usaq hot water person pel	ge in litre usage by r day (all w	es per da 5% if the a vater use, l	ay Vd,av Iwelling is hot and co	erage = designed i ld)	(25 x N) to achieve	+ 36 a water us	se target o	92 f	.99		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage in	n litres per	r day for ea	ach month I	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	102.29	98.57	94.85	91.13	87.41	83.69	83.69	87.41	91.13	94.85	98.57	102.29		
Energy o	content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600) kWh/mor	l otal = Su hth (see Ta	m(44) ₁₁₂ = ables 1b, 1	c, 1d)	1115.85	(44)
(45)m=	151.69	132.67	136.9	119.35	114.52	98.82	91.57	105.08	106.34	123.93	135.28	146.9		
If instan	tonoouou	ator booti	ng of point	t of upp (pr	hot water	(oforego)	ontor 0 in	hoven (46	-) to (61)	Total = Su	m(45) ₁₁₂ =		1463.06	(45)
(46)					47.40	storage),	40.74	15 7C	15.05	10.50	20.20	22.04		(46)
Water	storage	loss:	20.54	17.9	17.10	14.62	13.74	15.76	15.95	18.59	20.29	22.04		(40)
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If com	munity h	eating a	ind no ta	nk in dw	velling, e	nter 110) litres in	(47)						
Otherv Water	vise it no storage	o stored	hot wate	er (this ir	icludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				(D		(48)
Tempe	erature fa	actor fro	m Table	2b							(р С		(49)
Energy	/ lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =		15	50		(50)
b) If m Hot wa	anufact	urer's de	eclared (cylinder l com Tabl	loss fact le 2 (kW	or is not h/litre/da	known:					01		(51)
If com	munity h	eating s	ee secti	on 4.3		1,1110,00	xy)				0.	01		(01)
Volum	e factor	from Ta	ble 2a								0.	93		(52)
Tempe	erature fa	actor fro	m Table	2b							0	.6		(53)
Energy	/ lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	1.	08		(54)
Water	(50) 01 (storage	loss cal	culated t	for each	month			((56)m - (55) x (41)	m	1.	08		(55)
(56)m-		20.24		22 54	22.6	22.51	22.6		22.51	22.6	22.51	22.6		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	(30)
(57)m=	33.6	30.34	33.6	32.51	33.6	32.51	33.6	33.6	32.51	33.6	32.51	33.6		(57)
Primary circuit loss (annual) from Table 3												(58)		
Primar	Primary circuit loss calculated for each month (59)m = (58) \div 365 × (41)m													
(moo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$	
(61)m= 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (61)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (50)m + (40)m + (50)m + (50)m$	
(62)m= 208.55 184.02 193.76 174.38 171.38 153.85 148.43 161.94 161.36 180.78 190.3 2	203.76 (62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water h	neating)
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	
(63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (63)
Output from water heater	
(64)m= 208.55 184.02 193.76 174.38 171.38 153.85 148.43 161.94 161.36 180.78 190.3 2	203.76
Output from water heater (annual)	2132.51 (64)
Heat gains from water heating, kWh/month 0.25 ' [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m +	(59)m]
(65)m= 95.92 85.2 91.01 83.7 83.56 76.88 75.93 80.43 79.38 86.69 89	94.33 (65)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from comm	unity heating
5. Internal gains (see Table 5 and 5a):	
Metabolic gains (Table 5) Watts	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	Dec
(66)m= 123.76 123.76 123.76 123.76 123.76 123.76 123.76 123.76 123.76 123.76 123.76	23.76 (66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
(67)m= 19.69 17.48 14.22 10.77 8.05 6.79 7.34 9.54 12.81 16.26 18.98	20.23 (67)
Appliances gains (calculated in Appendix L. equation L13 or L13a), also see Table 5	
(68)m= 220.81 223.11 217.33 205.04 189.52 174.94 165.2 162.9 168.68 180.97 196.49 2	(68)
Cooking gains (calculated in Appendix Leguation L15 or L15a), also see Table 5	
(69)m= 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38 35.38	35.38 (69)
Pumps and fans gains (Table 5a)	
	0 (70)
Losses e.g. evaporation (negative values) (Table 5)	
$(71)_{m=} -99.01 -99.$.99.01 (71)
Water beating gains (Table 5)	
(72)m = 128 93 126 78 122 32 116 25 112 32 106 77 102 06 108 1 110 24 116 52 123 61 1	26 79 (72)
Total internal gains = (66)m + (67)m + (68)m + (60)m + (71)m + (72)m	
$\begin{array}{c} (73)_{m} = & (32)_{m} = $	(73)
6 Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation) 1.
Orientation: Access Factor Area Flux g FF	Gains
Table 6dm²Table 6aTable 6bTable 6c	(W)
East 0.9x 0.77 x 16.56 x 19.64 x 0.63 x 0.7	= 99.4 (76)
East 0.9x 0.77 x 10.35 x 19.64 x 0.63 x 0.7	= 62.12 (76)
East 0.9x 0.77 x 16.56 x 38.42 x 0.63 x 0.7	
	= 194.44 ((70)
East 0.9x 0.77 x 10.35 x 38.42 x 0.63 x 0.7	= 194.44 (76) = 121.53 (76)

East	0.9x	0.77	;	< [10.3	5	x	6	3.27	x		0.63	×	0.7	=	200.14	(76)
East	0.9x	0.77	;	٢Ē	16.5	6	x	g	2.28	×		0.63	x	0.7	=	467.03	(76)
East	0.9x	0.77	3	٢Ē	10.3	5	x	g	2.28	x		0.63	×	0.7	=	291.89	(76)
East	0.9x	0.77	2	• [16.5	6	x	1	13.09	x		0.63	x	0.7	=	572.36	(76)
East	0.9x	0.77	3	<u>،</u> [10.3	5	x	1	13.09	×		0.63	×	0.7	=	357.72	(76)
East	0.9x	0.77	2	• [16.5	6	x	1	15.77	x		0.63	x	0.7	=	585.91	(76)
East	0.9x	0.77	;	• [10.3	5	x	1	15.77	x		0.63	×	0.7	=	366.19	(76)
East	0.9x	0.77	;	• [16.5	6	x	1	10.22	x		0.63	×	0.7	=	557.81	(76)
East	0.9x	0.77	;	< [10.3	5	x	1	10.22	x		0.63	x [0.7	=	348.63	(76)
East	0.9x	0.77	;	• [16.5	6	x	g	4.68	×		0.63	×	0.7	=	479.15	(76)
East	0.9x	0.77	;	• [10.3	5	x	g	4.68	x		0.63	×	0.7	=	299.47	(76)
East	0.9x	0.77	;	• [16.5	6	x	7	3.59	x		0.63	×	0.7	=	372.43	(76)
East	0.9x	0.77	;	• [10.3	5	x	7	3.59	x		0.63	_ x [0.7	=	232.77	(76)
East	0.9x	0.77	;	• [16.5	6	x	4	5.59	x		0.63	×	0.7	=	230.72	(76)
East	0.9x	0.77	;	• [10.3	5	x	4	5.59	x		0.63	×	0.7	=	144.2	(76)
East	0.9x	0.77	2	• [16.5	6	x	2	4.49	x		0.63	x	0.7	=	123.94	(76)
East	0.9x	0.77	2	• [10.3	5	x	2	4.49	x		0.63	x	0.7	=	77.46	(76)
East	0.9x	0.77	;	• [16.5	6	x	1	6.15	x		0.63	×	0.7	=	81.74	(76)
East	0.9x	0.77	;	• [10.3	5	x	1	6.15	x		0.63	x	0.7	=	51.09	(76)
Solar (pains in	watts, ca	alculate	d fo	or each	n month	1			(83)m	า = Su	m(74)m	(82)m	-1		1	
(83)m=	161.52	315.97	520.36		758.92	930.08		952.1	906.44	778	.62	605.2	374.93	201.4	132.83	J	(83)
l otal g	jains – II	nternal a	and sola	ar (8	84)m =	(73)m	+ (83)m	, watts			I		1		1	(2.1)
(84)m=	591.08	743.47	934.36		1151.1	1300.1	13	300.74	1241.17	1119	9.29	957.06	748.81	600.6	551.05		(84)
7. Me	an inter	nal temp	berature	e (h	eating	seasor	า)										
Temp	perature	during h	neating	pei	riods in	the liv	ng	area	from Tab	ole 9	, Th1	(°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	· liv	ing are	a, h1,n	า (s	ee Ta	ble 9a)							1	
	Jan	Feb	Mar	+	Apr	May	-	Jun	Jul	A	ug	Sep	Oct	Nov	Dec		(20)
(86)m=	1	0.98	0.94		0.81	0.61		0.42	0.31	0.3	35	0.61	0.91	0.99	1	J	(86)
Mear	interna	l temper	ature ir	liv	ving are	a T1 (f	ollo	w ste	ps 3 to 7	7 in T	able	9c)				1	
(87)m=	19.93	20.16	20.51		20.84	20.97		21	21	2	1	20.98	20.73	20.25	19.89	J	(87)
Temp	erature	during h	eating	per	riods in	rest of	dw	elling	from Ta	able 9	9, Th	2 (°C)				-	
(88)m=	19.99	19.99	19.99		20.01	20.01	2	20.02	20.02	20.	03	20.02	20.01	20	20		(88)
Utilis	ation fac	tor for g	ains for	re	st of dv	velling,	h2	,m (se	e Table	9a)							
(89)m=	0.99	0.98	0.92		0.76	0.55		0.36	0.24	0.2	28	0.53	0.88	0.98	1]	(89)
Mear	interna	l temper	ature ir	n th	e rest o	of dwel	ing	T2 (f	ollow ste	eps 3	8 to 7	in Table	e 9c)				
(90)m=	18.57	18.91	19.4		19.84	19.98		20.02	20.02	20.	03	20	, 19.72	19.06	18.52]	(90)
			•				•			-		fl	LA = Liv	ing area ÷ (4	4) =	0.41	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

(· · · · · · · · · · · · · · · · ·
(92)m= 19.13 19.43 19.86 20.25 20.39 20.43 20.43 20.43 20.41 20.14 19.55 19.0

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m=	19.13	19.43	19.86	20.25	20.39	20.43	20.43	20.43	20.41	20.14	19.55	19.09		(93)
8. Spa	ace hea	ting requ	uirement	t										
Set Ti the ut	i to the r ilisation	nean int factor fo	ernal ter or gains	mperatui using Ta	re obtain Ible 9a	ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm):										
(94)m=	0.99	0.98	0.92	0.78	0.57	0.39	0.27	0.31	0.56	0.88	0.98	0.99		(94)
Usefu	Il gains,	hmGm ,	W = (94	4)m x (84	4)m									
(95)m=	586.09	725.33	861.43	892.61	743.35	501.55	330.67	346.7	535.9	661.32	588.81	547.66		(95)
Month	nly aver	age exte	rnal tem	perature	e from Ta	able 8					-			
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m x	k [(93)m	– (96)m]			l .	
(97)m=	1335.82	1304.65	1195.83	1000.19	763.29	503.54	330.89	347.16	548.6	837.63	1100.64	1324.43		(97)
Space	e heatin	g require	ement fo	r each n	honth, k	Nh/mont	th = 0.02	4 x [(97))m – (95)m] x (4	1)m		I	
(98)m=	557.81	389.3	248.79	77.46	14.84	0	0	0	0	131.17	368.52	577.92		_
								Tota	l per year	(kWh/yeai	r) = Sum(9	8)15,912 =	2365.79	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								29.33	(99)
9b. En	ergy rec	luiremer	nts – Cor	mmunity	heating	scheme)							
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none 0														(301)
Fraction of space heat from community system $1 - (301) = 1$												(302)		
The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter													_	
The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C.														
Fractio	n of hea	at from C	Commun	ity boiler	S								0.2	(303a)
Fractio	n of cor	nmunity	heat fro	m heat s	ource 2								0.8	(303b)
Fractio	n of tota	al space	heat fro	m Comn	nunity bo	oilers				(3	02) x (303	a) =	0.2	(304a)
Fractio	n of tota	al space	heat fro	m comm	unity he	at sourc	e 2			(3	02) x (303	b) =	0.8	(304b)
Factor	for cont	rol and o	charging	method	(Table 4	4c(3)) fo	r commu	inity hea	ating syst	tem			1	(305)
Distribu	ution los	s factor	(Table 1	2c) for c	commun	ity heatir	ng systei	m					1.05	(306)
Space	heating	9											kWh/year	-
Annual	space	heating	requirem	nent									2365.79	4
Space	heat fro	m Comr	nunity b	oilers					(98) x (30)4a) x (30	5) x (306) :	=	496.82	(307a)
Space	heat fro	m heat :	source 2	-					(98) x (30)4b) x (30	5) x (306) : 	=	1987.27	(307b)
Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)										0	(308			
Space heating requirement from secondary/supplementary system (98) x (301) x 100 ÷ (308) =											0	(309)		
Water Annual	heating water h	l neating r	equirem	ent									2132.51	
If DHW Water	/ from contractering heat fro	ommunit m Comn	ty schem nunity bo	ne: oilers					(64) x (30)3a) x (30	5) x (306) :	=	447.83	(310a)
Water heat from heat source 2 $(64) \times (303b) \times (305) \times (306) =$												1791.31](310b)	
Electric	city used	d for hea	t distribu	ution				0.01	× [(307a).	(307e) +	· (310a)…((310e)] =	47.23	(313)

Cooling System Energy Efficiency Ratio)				0	(314)
Space cooling (if there is a fixed cooling	g system, if not er	nter 0) = (107) ÷ (314)	=		0	(315)
Electricity for pumps and fans within dw mechanical ventilation - balanced, extra	velling (Table 4f): act or positive inp	ut from outside		Γ	328.8	(330a)
warm air heating system fans					0	(330b)
pump for solar water heating				Γ	0	(330g)
Total electricity for the above, kWh/yea	r	=(330a) + (330b	o) + (330g) =	Γ	328.8	(331)
Energy for lighting (calculated in Appen	dix L)			Γ	347.66	(332)
12b. CO2 Emissions – Community hea	ting scheme					
		Energy kWh/year	Emission fact kg CO2/kWh	or Ei kç	missions g CO2/year	
CO2 from other sources of space and v Efficiency of heat source 1 (%)	vater heating (not If there is 0	t CHP) CHP using two fuels repeat (363) to ((366) for the second	d fuel	91.5	(367a)
Efficiency of heat source 2 (%)	If there is C	CHP using two fuels repeat (363) to	(366) for the second	d fuel	315	(367b)
CO2 associated with heat source 1		[(307b)+(310b)] x 100 ÷ (367b) x	0.22	=	223	(367)
CO2 associated with heat source 2		[(307b)+(310b)] x 100 ÷ (367b) x	0.52	=	622.56	(368)
Electrical energy for heat distribution		[(313) x	0.52	=	24.51	(372)
Total CO2 associated with community	systems	(363)(366) + (368)(372)	=	870.08	(373)
CO2 associated with space heating (se	condary)	(309) x	0	=	0	(374)
CO2 associated with water from immer	sion heater or ins	tantaneous heater (312) x	0.22	=	0	(375)
Total CO2 associated with space and w	vater heating	(373) + (374) + (375) =			870.08	(376)
CO2 associated with electricity for pum	ps and fans within	n dwelling (331)) x	0.52	=	170.65	(378)
CO2 associated with electricity for light	ng	(332))) x	0.52	=	180.43	(379)
Total CO2, kg/year	sum of (376)(382	?) =			1221.15	(383)
Dwelling CO2 Emission Rate	(383) ÷ (4) =				15.14	(384)
El rating (section 14)					86.98	(385)

User Details:													
Assessor Name:	Matthew Has	skell		Strom	a Num	ber:		STRO	006210				
Software Name:	Stroma FSA	P 2012		Softwa	are Ver	sion:		Versio	on: 1.0.5.8				
		Р	roperty /	Address:	80m2 2	B4P MF							
Address :													
1. Overall dwelling dimer	nsions:												
Ground floor			Area 8	a(m²) 0.66	(1a) x	Av. He i	ight(m) 2.7	(2a) =	217.78	(3a)			
Total floor area TFA = (1a)+(1b)+(1c)+(1	d)+(1e)+(1r	n) 8	0.66	(4)								
Dwelling volume			L		(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	217.78	(5)			
2. Ventilation rate:													
	main heating	secondar heating	у	other		total			m ³ per houi	ſ			
Number of chimneys	0	+ 0] + [0] = [0	X 4	40 =	0	(6a)			
Number of open flues	0	+ 0	¯ + ¯	0] = [0	x 2	20 =	0	(6b)			
Number of intermittent fan	s				- 	3	x ^	10 =	30	(7a)			
Number of passive vents					Ē	0	x ^	10 =	0	(7b)			
Number of flueless gas fire	es				Г	0	x 4	40 =	0	(7c)			
Jumber of flueless gas fires 0 × 40 = 0 (7c) Air changes per hour													
Infiltration due to chimney	c fluos and fan	$x_{c} = (6a) + (6b) + (7)$	′a)+(7b)+(3	7c) -	Г			. (5)					
If a pressurisation test has be	en carried out or is	intended, procee	d to (17), c	otherwise c	continue fro	30 om (9) to ((16)	÷ (5) =	0.14	(8)			
Number of storeys in the	e dwelling (ns)						,		0	(9)			
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)			
Structural infiltration: 0.2	25 for steel or ti	imber frame or	0.35 for	masonr	y constr	uction			0	(11)			
if both types of wall are pre deducting areas of opening	esent, use the value	e corresponding to 35	the greate	er wall area	a (after								
If suspended wooden flo	cor, enter 0.2 (unsealed) or 0.	1 (seale	d), else	enter 0				0	(12)			
If no draught lobby, ente	er 0.05, else en	iter 0	·						0	(13)			
Percentage of windows	and doors drau	ught stripped							0	(14)			
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)			
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)			
Air permeability value, o	50, expressed	in cubic metre	s per ho	ur per so	quare m	etre of e	nvelope	area	5	(17)			
If based on air permeabilit	y value, then (1	$ 8) = [(17) \div 20] + (8)$	3), otherwi	se (18) = (16)				0.39	(18)			
Air permeability value applies	if a pressurisation	test has been dor	e or a deg	iree air pei	rmeability i	is being us	sed						
Shelter factor	1			(20) = 1 - [0.075 x (1	9)] =			3	(19)			
Infiltration rate incorporati	na shelter facto	r		(21) = (18)) x (20) =				0.70	(20)			
Infiltration rate modified fo	r monthly wind	speed		. , . ,					0.0				
Jan Feb I	Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec					
Monthly average wind spe	ed from Table	7											
(22)m= 5.1 5 4	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7					
Wind Factor (22a)m = (22	/ind Factor (22a)m = (22)m ÷ 4												
(22a)m= 1.27 1.25 1	.23 1.1	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18					

Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m															
	0.38	0.38	0.37	0.33	0.32	0.29	0.29	0.28	0.3	0.32	0.34	0.35			
Calcul	ate effe	ctive air	change .	rate for t	he appli	cable ca	se		-	-			-		
II IIIt				andix NL (2	2h) _ (22c	$(a) \sim Emy(a)$	austion /		nuice (22h) = (22a)			0		(23a)
II CAI					.50) = (258		equation (i	\mathbf{N}	1WISE (23D) = (23a)			0		(23b)
IT Data	anced with	i neat reco	overy: emic	iency in %	allowing r	or in-use to	actor (from	n Table 4n) =		· · · •		0		(23c)
a) If	balance	ed mecha	anical ve r	entilation	with hea	at recove	ery (MVI r	HR) (24a 1	a)m = (22 I	2b)m + (: I	23b) × [′	1 – (23c)) ÷ 100]		
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0	J		(24a)
b) If	balance	ed mecha	anical ve	entilation	without	heat rec	covery (N	MV) (24b	o)m = (22	2b)m + (2	23b)	1	1		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	/e input v	ventilatio	on from o	outside						
i	if (22b)n	n < 0.5 >	(23b), t	hen (240	c) = (23b	o); otherv	vise (24	c) = (22k	o) m + 0.	5 × (23b) 		1		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0	J		(24c)
d) If	natural if (22b)n	ventilation = 1, the	on or wh en (24d)	ole hous m = (22	e positiv b)m othe	ve input [.] erwise (2	ventilatio 4d)m =	on from l 0.5 + [(2	oft 2b)m² x	0.5]					
(24d)m=	0.57	0.57	0.57	0.55	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56]		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t) or (24	c) or (24	d) in boy	(25)				1		
(25)m=	0.57	0.57	0.57	0.55	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56]		(25)
	<u> </u>			1		1	I	1	1	1		1	1		
3. He	at losse	s and he	eat loss	paramete	er:										
ELEN	IENT	Gros	ss (m²)	Openin m	gs I ²	Net Ar A ,r	rea m²	U-valı W/m2	ue :K	A X U (W/I	<)	k-value kJ/m²₊l	e K	A X kJ/K	k
Doors						2.1	x	1	=	2.1					(26)
Windo	ws Type	e 1				11.12	<u>2</u> x1	/[1/(1.4)+	0.04] =	14.74					(27)
Windo	ws Type	2				6.95	x1,	/[1/(1.4)+	0.04] =	9.21					(27)
Walls ⁻	Type1	48.	3	18.0	7	30.23	3 X	0.18	= [5.44	Ξ r				(29)
Walls ⁻	Tvpe2	61.4	12	21		59.32	> x	0.18		10.68	= ;		\dashv		(29)
Total a	area of e	lements	 			109.7	3		เ		L)` ′ (31)
Party	vall		,			100.7									
	loor					13.12		0	= [0			\dashv		
Party I	100r					80.66	<u>}</u>				L		\dashv		(32a)
Party o	ceiling					80.66	3				L				(32b)
* for win ** inclua	dows and le the area	roof wind as on both	ows, use e sides of ir	effective wi nternal wal	ndow U-va Is and pari	alue calcul titions	ated using	g formula 1	/[(1/U-valu	ie)+0.04] a	is given in	paragraph	1 3.2		
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)) + (32) =				42.1	В	(33)
Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	16928.	32	(34)
Therm	al mass	parame	ter (TMF	⁻ = Cm ÷	- TFA) ir	א kJ/m²K			Indica	tive Value	Medium		250		(35)
For desi can be u	ign assess Jsed inste	sments wh ad of a de	ere the de tailed calc	tails of the ulation.	construct	ion are not	t known pr	recisely the	e indicative	e values of	TMP in Ta	able 1f			•
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						16.3	6	(36)
if details	if details of thermal bridging are not known (36) = $0.05 \times (31)$														
Total fa	abric he	at loss							(33) +	(36) =			58.5	3	(37)
Ventila	ation hea	at loss ca	alculated	monthl	/				(38)m	= 0.33 × (25)m x (5)				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]		
(38)m=	41.21	41	40.8	39.86	39.68	38.86	38.86	38.71	39.18	39.68	40.04	40.41]		(38)
Heat tr	leat transfer coefficient. W/K (39)m = (37) + (38)m														
(39)m=	99.74	99.54	99.34	98.39	98.22	97.4	97.4	97.24	97.71	98.22	98.58	98.95]		
				I											

Stroma FSAP 2012 Version: 1.0.5.8 (SAP 9.92) - http://www.stroma.com

Average = Sum(39)_{1...12} /12= $98.3p_{age 2}$

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.24	1.23	1.23	1.22	1.22	1.21	1.21	1.21	1.21	1.22	1.22	1.23		
Numb			L						,	Average =	Sum(40)1.	12 /12=	1.22	(40)
NUMD		Eob	Mor		May	lun	1.1	Aug	Son	Oct	Nov	Dec		
(41)m-	31	28	1VIAI 31	Арі 30	1VIA y	30	31 31	Aug 31	30	31	30	31		(41)
(41)11-	51	20	51	50	51	- 50	51	51	50	51	50	51		()
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
Assum if TF if TF	ned occu A > 13.9 A £ 13.9	ipancy, 9, N = 1 9, N = 1	N + 1.76 x	: [1 - exp	(-0.0003	849 x (TF	- A -13.9)2)] + 0.(0013 x (⁻	TFA -13	2. .9)	48		(42)
Annua Reduce not mor	l averag the annua e that 125	e hot wa al average litres per j	ater usag hot water person pe	ge in litre usage by s r day (all w	es per da 5% if the d vater use, l	ay Vd,av Iwelling is hot and co	erage = ^{designed} ld)	(25 x N) to achieve	+ 36 a water us	se target o	92 f	.99		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)	-					
(44)m=	102.29	98.57	94.85	91.13	87.41	83.69	83.69	87.41	91.13	94.85	98.57	102.29		-
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x [OTm / 3600) kWh/mor	Total = Su hth (see Ta	m(44) ₁₁₂ = ables 1b, 1	= c, 1d)	1115.85	(44)
(45)m=	151.69	132.67	136.9	119.35	114.52	98.82	91.57	105.08	106.34	123.93	135.28	146.9		
lf inoton	tanaayaya	otor hooti	ng ot poin	t of upp (pg	botwata	, otorogo)	ontor 0 in	hoven (46) to (61)	Total = Su	m(45) ₁₁₂ =	-	1463.06	(45)
						slorage),		boxes (40)	10 (01)	40.50	00.00	00.04		(46)
Water	storage	loss:	20.54	17.9	17.18	14.82	13.74	15.76	15.95	18.59	20.29	22.04		(40)
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If com	munity h	eating a	ind no ta	ank in dw	velling, e	nter 110) litres in	(47)						
Otherv	vise if no	stored	hot wate	er (this in	icludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in ((47)			
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/dav):				1	39		(48)
Tempe	erature f	actor fro	m Table	2b		,	, , , , , , , , , , , , , , , , , , ,				0.	54		(49)
Energy	y lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =		0.	75		(50)
b) If m	nanufact	urer's de	eclared	cylinder l	oss fact	or is not	known:							
Hot wa	ater stora	age loss	factor fi	rom Tabl	e 2 (kW	h/litre/da	ay)					0		(51)
Volum	e factor	from Ta	ble 2a	011 4.5								0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	y lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)								0.	75		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(56)
If cylind	er contains	s dedicate	d solar sto	orage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	alfied by	ractor f	rom Tab		nere is s	solar wat	ter heati	ng and a		r thermo	stat)	22.22		(50)
(59)m=	23.20	21.01	23.20	22.51	23.20	22.51	23.20	23.20	22.51	23.20	22.51	23.20		(59)

Combi	loss ca	alculated	for eac	h month	(61)m =	(60) ·	÷ 365 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	l for e	each month	(62)m =	= 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	198.28	174.75	183.5	164.44	161.12	143.	.92 138.17	151.68	151.43	170.52	180.37	193.5		(62)
Solar DH	- IW input	calculated	using Ap	pendix G o	r Appendix	H (ne	gative quantity	/) (enter '()' if no sola	r contribut	tion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	S and/or V	WWHRS	app	lies, see Ap	pendix	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	vater hea	ter											
(64)m=	198.28	174.75	183.5	164.44	161.12	143.	.92 138.17	151.68	151.43	170.52	180.37	193.5		
					•			Out	put from w	ater heate	r (annual)₁	12	2011.67	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0	.85 × (45)m	+ (61)r	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m=	87.71	77.78	82.8	75.76	75.35	68.9	93 67.72	72.22	71.43	78.48	81.05	86.12		(65)
inclu	de (57))m in calo	ulation	of (65)m	only if c	ylind	er is in the o	dwelling	or hot w	ater is f	rom com	munity h	eating	
5. Int	ernal g	ains (see	Table	5 and 5a):									
Metabo	olic dai	ns (Table	.5) Wa	itts	,									
motab	Jan	Feb	Mar	Apr	May	Ju	ın Jul	Aug	Sep	Oct	Nov	Dec	1	
(66)m=	123.76	123.76	123.76	123.76	123.76	123.	76 123.76	123.76	123.76	123.76	123.76	123.76		(66)
Lightin	g gains	(calcula	ted in A	ppendix	L, equat	ion L	9 or L9a), a	lso see	Table 5		1		1	
(67)m=	19.68	17.48	14.22	10.76	8.05	6.7	9 7.34	9.54	12.81	16.26	18.98	20.23	1	(67)
Appliar	nces aa	ains (calc	ulated i	n Appen	u dix L. ea	uatio	n L13 or L1	i 3a), also	o see Ta	ble 5		1	1	
(68)m=	220.81	223.11	217.33	205.04	189.52	174.	.94 165.2	162.9	168.68	180.97	196.49	211.07	1	(68)
Cookin	a dains	s (calcula	i ated in A	L Appendix	L. equat	ion L	15 or L15a), also s	ı ee Table	5	1		1	
(69)m=	35.38	35.38	35.38	35.38	35.38	35.3	38 35.38	35.38	35.38	35.38	35.38	35.38	1	(69)
Pumps	and fa	uns gains	(Table		1				1		1		1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3	1	(70)
		<u>I</u> vanoratio	n (nega	I ative valu	I Ies) (Tab	L			1				1	
(71)m=	-99.01	-99.01	-99.01	-99.01	-99.01	-99.	01 -99.01	-99.01	-99.01	-99.01	-99.01	-99.01	1	(71)
Water	heating	L aning (1	[[able 5]										J	
(72)m=	117.89	115.74	111.28	105.22	101.28	95.	74 91.03	97.06	99.21	105.49	112.57	115.75	1	(72)
Total i	ntorna	L agine –					(66)m + (67)m	n + (68)m	+ (69)m + ((70)m + (7	(1)m + (72)	m	I	. ,
(73)m=	421.52	419.46	405.96	384.15	361.98	340	6 326.69	332.64	343.82	365.85	391.17	410.19	1	(73)
6 Sol	ar gain	s.				0.10		002101						· · ·
Solar g	ains are	calculated	using sol	ar flux from	Table 6a	and as	sociated equa	tions to c	onvert to th	ne applical	ole orientat	ion.		
Orienta	ation:	Access F	actor	Area	l		Flux		g_		FF		Gains	
		Table 6d		m²			Table 6a	٦	Table 6b	Т	able 6c		(W)	
East	0.9x	0.77	>	< <u>11</u> .	.12	хГ	19.64	x	0.63	X	0.7	=	66.75	(76)
East	0.9x	0.77	,	6.9	95	×	19.64	× 🗆	0.63	=	0.7	=	41.72	(76)
East	0.9x	0.77	,	(11.	.12	×Г	38.42	x 🗖	0.63	╡ x	0.7	=	130.57	(76)
East	0.9x	0.77	,	6.9	95	×Г	38.42	x	0.63	╡ <u> </u>	0.7	=	81.61](76)
East	0.9x	0.77	,	. 11.	.12	×	63.27	x	0.63	= × [0.7	=	215.03	(76)

East	0.9x	0.77		x	6.9	5	x	6	3.27	x		0.63	` ,	Γ	0.7		= [134.39	(76)
East	0.9x	0.77		x	11.	12	x	9	2.28] ×		0.63	Ξ,	Ē	0.7		= [313.61	(76)
East	0.9x	0.77		x	6.9	5	x	9	2.28	x		0.63	_ _ ,	Ē	0.7		= [196	(76)
East	0.9x	0.77		x	11.	12	x	1	13.09	x		0.63	,	Ē	0.7		= [384.34	(76)
East	0.9x	0.77		x	6.9	5	x	1	13.09	x		0.63	_ ,	Ē	0.7		= [240.21	(76)
East	0.9x	0.77		x	11.1	12	x	1	15.77	x		0.63	_ _ ,	Ē	0.7		= [393.44	(76)
East	0.9x	0.77		x	6.9	5	x	1	15.77	Īx		0.63	_ _ ,	Ē	0.7		= [245.9	(76)
East	0.9x	0.77		x	11.	12	x	1	10.22	x		0.63	_ ,	Ē	0.7		= [374.57	(76)
East	0.9x	0.77		x	6.9	5	x	1	10.22	x		0.63	_ ,	Ē	0.7		= [234.1	(76)
East	0.9x	0.77		x	11.	12	x	9	4.68] ×		0.63	Ξ,	Ē	0.7		= [321.75	(76)
East	0.9x	0.77		x	6.9	5	x	9	4.68] x		0.63	Ξ,	Γ	0.7		= [201.09	(76)
East	0.9x	0.77		x	11.	12	x	7	3.59] x		0.63	,	Γ	0.7		= [250.09	(76)
East	0.9x	0.77		x	6.9	5	x	7	3.59] ×		0.63	Ξ,	Ē	0.7		= [156.3	(76)
East	0.9x	0.77		x	11.	11.12		4	5.59] ×		0.63	Ξ,	Ē	0.7		= [154.93	(76)
East	0.9x	0.77		x	6.9	5	x	4	5.59] x		0.63	Ξ,	Ē	0.7		= [96.83	(76)
East	0.9x	0.77		x	11.	12	x	2	4.49] ×		0.63	Ξ,	Ē	0.7		= [83.22	(76)
East	0.9x	0.77		x	6.9	5	x	2	4.49] x		0.63	,	Ē	0.7		= [52.02	(76)
East	0.9x	0.77		x	11.1	12	x	1	6.15] x		0.63	۲,	Ē	0.7		= [54.89	(76)
East	0.9x	0.77		x	6.9	5	x		6.15] x		0.63	۲,	Ē	0.7		= [34.31	(76)
	L									1							L		
Solar g	ains in	watts, ca	alculate	ed	for eacl	n mont	h			(83)m	า = Su	ım(74)m .	(82)	m					
(83)m=	108.46	212.17	349.42	2	509.61	624.55	5 6	39.33	608.67	522	.84	406.39	251	.76	135.24	89.	19		(83)
Total g	ains – i	nternal a	and sol	ar	(84)m =	: (73)m) + ((83)m	, watts										
(84)m=	529.98	631.64	755.38	8	893.76	986.53	5 9	979.93	935.36	855	.48	750.21	617	.61	526.41	499	.38		(84)
7. Me	an inter	nal temp	peratur	e (heating	seaso	n)												
Temp	erature	during h	eating	pe	eriods ir	the liv	ving	area	from Tal	ble 9	, Th1	(°C)					Γ	21	(85)
Utilisa	ation fac	tor for g	ains fo	r li	ving are	a, h1,ı	m (s	see Ta	ble 9a)								L		
	Jan	Feb	Mar		Apr	Мау	/	Jun	Jul	A	ug	Sep	0	ct	Nov	D	ес		
(86)m=	1	0.99	0.98		0.92	0.79		0.61	0.45	0.5	51	0.78	0.9	6	0.99	1			(86)
Mean	interna	l temper	ature i	n li	ving are	ea T1 (follo	ow ste	ps 3 to 7	7 in T	able	9c)							
(87)m=	19.7	19.88	20.19	Т	20.58	20.85		20.97	20.99	20.	99	20.9	20.	51	20.03	19.	66		(87)
Temp	erature	durina h	eating		eriods ir	resto	f dv	vellina	from Ta	able 9	9 Th	2 (°C)							
(88)m=	19.89	19.89	19.89	T	19.9	19.91		19.91	19.91	19.	92	19.91	19.	91	19.9	19	.9		(88)
L Itilio	ution for	tor for a	l aine fo	 r r/		vollina	 h0								1				
(89)m=	1	0.99	0.97		0.9	0.73	, 112 	0.52	0.34	(ja)	4	0.7	0.9)4	0,99	1			(89)
·/···		1	1	- 1			1			ı	- 1		1		1	. '			

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	18.17	18.44	18.89	19.43	19.77	19.89	19.91	19.91	19.84	19.35	18.66	18.12		(90)
-									f	LA = Livin	g area ÷ (4	4) =	0.41	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 18.8 19.04 19.91 20.22 20.36 20.28 19.83 19.22 18.8 (92)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m=	18.8	19.04	19.43	19.91	20.22	20.34	20.36	20.36	20.28	19.83	19.22	18.76		(93)
8. Sp	ace hea	ting requ	uirement	t										
Set T the ut	i to the i ilisation	mean int factor fo	ernal ter or gains	mperatui using Ta	re obtair able 9a	ied at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.99	0.99	0.97	0.9	0.75	0.55	0.39	0.44	0.73	0.94	0.99	1		(94)
Usefu	ıl gains,	hmGm	, W = (94	4)m x (84	4)m			-						
(95)m=	527.1	623.81	729.28	801.13	743.01	542.46	363.81	380.4	545.92	582.67	520.55	497.3		(95)
Month	nly aver	age exte	ernal tem	perature	e from Ta	able 8							L	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m : r	x [(93)m	– (96)m]			ı	
(97)m=	1446.28	1406.99	1284.45	1082.91	836.56	559	366.22	384.87	603.44	906.52	1195.11	1440.82		(97)
Space	e heatin	g require	ement fo	or each n	nonth, k\	Nh/mont	th = 0.02	24 x [(97])m – (95 I)m] x (4 ⁻	1)m	i	I	
(98)m=	683.87	526.29	413.05	202.88	69.6	0	0	0	0	240.95	485.68	701.98		٦
								Tota	l per year	(kWh/year	[.]) = Sum(9	8)15,912 =	3324.31	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								41.21	(99)
9a. En	ergy red	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Spac	e heatiı	ng:												
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	– (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficiency of main space heating system 1								93.5	(206)					
Efficie	ency of	seconda	rv/sunnl	ementar	v heatin	n svsten	n %						0] (208)
Linok		Eab	Mor	Apr	Mov			Aug	Son	Oct	Nov	Dec	k)Mb/vos	
Snac	beatin		ement (c		d above		Jui	Aug	Sep		INOV	Dec	Kvvii/yea	11
Opaci	683.87	526.29	413.05	202.88	69.6	0	0	0	0	240.95	485.68	701.98		
(011)~	(1/00) m x (20				-	-		-				I	(014)
(211)11	$I = \{[(90)]_{731,41}$)III X (20	(4)] } X I	$100 \div (20)$	74 44	0	0	0	0	257.7	510 /5	750 78	1	(211)
	731.41	302.00	441.70	210.99	74.44	0	0	Tota		257.7	211)	- 130.78	2555.44	7(211)
0								1014	ii (itterii/yee				3555.41	
	e neatin	g tuel (s	econdar	'Y), KVVN/ 181	month									
- ([(90			00 ÷ (20		0	0	0	0	0	0	0	0	1	
(210)11-	Ū	Ŭ	Ů	Ŭ	Ŭ	Ŭ	Ŭ	Tota	l (kWh/vea	ar) =Sum(2	215)	=	0	1 (215)
Watar	hooting										- / 15,1012			
	from w	j ater hea	ter (calc	ulated al	hove)									
Output	198.28	174.75	183.5	164.44	161.12	143.92	138.17	151.68	151.43	170.52	180.37	193.5		
Efficier	L Cy of w	ater hea	iter										79.8	(216)
(217)m=	87.85	87.57	86.92	85.38	82.75	79.8	79.8	79.8	79.8	85.74	87.33	87.95		」 (217)
Fuel fo	r water	heating	د kWh/m	onth									I	
$(219)m = (64)m \times 100 \div (217)m$														
(219)m=	225.7	199.55	211.12	192.61	194.7	180.35	173.15	190.07	189.76	198.89	206.54	220		_
								Tota	I = Sum(2)	19a) ₁₁₂ =			2382.45	(219)
Annua	I totals									k	Wh/year		kWh/year	-
Space	heating	fuel use	ed, main	system	1								3555.41	

Water heating fuel used				2382.45	7
Electricity for pumps, fans and electric keep-hot					
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year	sum of (230a)	(230g) =		75	(231)
Electricity for lighting				347.63	(232)
12a. CO2 emissions – Individual heating systems	including micro-CHP				
	Energy kWh/year	Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	ar
Space heating (main system 1)	(211) x	0.216	=	767.97	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	514.61	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1282.58	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	180.42	(268)
Total CO2, kg/year	sum	of (265)(271) =		1501.92	(272)

TER =

(273)

18.62

10.4 APPENDIX 4 ASHP LAYOUT

10.5 ENERGY CENTRE LOCATION

10.6 APPENDIX 5: ASSESSMENT OF LOW- AND ZERO-CARBON TECHNOLOGIES

Wind	The ability to generate electricity via a turbine or similar device which harnesses natural wind energy. This could be considered as an onsite solution to reducing carbon emissions (turbines included within the development), or offsite (investing financially into a nearby wind farm).
Installation considerations	 Wind turbines come in a variety of sizes and shapes. Turbines of 1 Kw can be installed to single house and large- scale turbines of 1-2 MW can be installed on a development to generate electricity to multiple dwellings and other buildings. In both instances the electricity generated can be used on site or exported to the grid. Vertical- or horizontal- axis turbines are available. A roof-mounted 1 kW micro wind system costs up to £3,000. A 2.5 kW pole-mounted system costs between £9,900 and £19,000. A 6 kW polemounted system costs between £21,000 and £30,000 (taken from the Energy Saving Trust, TBC by supplier) Local average wind speed is a determining factor. A minimum average wind speed of 6 m/s is required.
	 Noise considerations can be an issue dependent on density and build-up of the surrounding area. Buildings in the immediate area can disrupt wind speed and reduce performance of the system. Planning permission will be required along with suitable space to site the turbine, whether ground installed or roof mounted.
Advantages	 Generation of clean electricity which can be exported to the grid or used onsite. Can benefit from the Feed in Tariff, reducing payback costs.
Disadvantages	 Planning restrictions and local climate often limit installation opportunities. Annual maintenance required. High initial capital cost. It is usual for an investor to consider a series of turbines to make the investment financially sound.
Development feasibility	 Installing a large turbine in an area such as this is not considered to be appropriate due to its appearance and physical impact on the built-up environment. Residents' and neighbours' concerns may include the look of the turbine, the hum of the generator and the possibility of stroboscopic shadowing from the blades on homes. Wind speed has been checked for the development scheme using the NOABL wind map: http://www.rensmart.com/Weather/BERR. The wind speed at ten metres for the development scheme is 4.7 metres per second (m/s) which is below the minimum of 5 m/s and threshold for technical viability. Typical payback times for a single turbine are expected to be greater than 15 years which means that the cost of installing and maintaining a single wind turbine is not considered a commercially-viable option.
Solar PV Solar Thermal	 The ability to generate energy (either electricity, hot water or a combination of the two) through harnessing natural solar energy. This could include the use of solar thermal panels, photovoltaic (PV) panels, or a combined solution. PV panels, similarly to turbines, can be considered both on and offsite. Solar Photovoltaics convert solar radiation into electricity which can be used on site or exported to the national grid. Solar Thermal generates domestic hot water from the sun's radiation. Glycol circulates within either flat plate or evacuated tube panels, absorbing heat from the sun, and transferring this energy to a water cylinder. A well designed solar thermal system will account for 50-60% of a dwelling's annual hot water demand. Sizing the system to meet a higher demand will lead to excess heat

Installation considerations	 Operate most efficiently on a south-facing sloping roof (between 30 and 45-degree pitch.) Shading must be minimal (one shaded panel can impact the output of the rest of the array.) Panels must not be laid horizontally on a flat roof as they will not self-clean. Panels will therefore need to be installed at an angle and with appropriate space between them, to avoid over-shading. Large arrays may require upgrades to substations if exporting electricity to the grid. Local planning requirements may restrict installation of panels on certain elevations. Installation must take into account pitch and fall of the roof, along with any additional plant on the roof to ensure there is sufficient room. The average domestic solar PV system is 4kWp and costs £5,000 - £8,000 (including VAT at 5 per cent) - (taken from the Energy Context and the properties)
Advantages	 Relatively straightforward installation, connection to landlord's supply and metering. Linear improvement in performance as more panels are installed. Maintenance free. Installation costs are continually reducing. Can benefit from the Food in Tariff to improve financial payback.
Disadvantages	 Can benefit from the Feed in Tanii to improve inancial payback. Not appropriate for high-rise developments, due to lack of roof space in
	 relation to total floor area. With Solar Thermal, performance is limited by the hot water demand of the building – system oversizing will lead to overheating.
Development feasibility	 The suitability of Solar panels has been considered for this Development. At a formal pre-app meeting with the GLA on 12/06/2019, the Applicant was asked to consider the potential for Solar PV within their development proposals. An assessment of viability has now been carried out. The suitability of Solar Panels has been considered for this development and whilst they can be concluded as one potentially viable option, they are not incorporated within the LZC for the following reasons: There are practical constraints in terms of roof area available for installation. Roofs will be used for installation of multiple ASHP units and associated noise attenuation measures. Living roofs and surface water run-off measures will also be incorporated, refer to proposed landscape features and location of brown roofs within the Landscape Management Plan overleaf. Furthermore, in adopting a SAP10 emission-factors approach, carbonemission reductions associated with Solar PV as a LZC technology are far lower when compared to SAP2012 which impacts negatively on the financial viability of Solar PV.
Aerothermal	The transfer of latent heat in the atmosphere to a compressed refrigerant gas to warm the water in a heating system. This includes air to water heat pumps
	 and air conditioning systems. Air Source Heat Pumps (ASHPs) extract heat from the external air and condense this energy to heat a smaller space within a dwelling or non-domestic building. A pump circulates a refrigerant through a coil to absorb energy from the air. This refrigerant is then compressed to raise its temperature which can then be used for space heating and domestic hot water. They can feed either low-temperature radiators or underfloor heating and often have electric immersion heater back-up for the winter months.

Installation considerations Advantages	 ASHPs operate effectively in buildings with a low energy demand, as they emit low levels of energy suitable for maintaining rather than dramatically increasing internal temperatures. It is therefore vital that the dwelling has a low heating demand to ensure the system can provide appropriate space-heating capability. Underfloor heating will give the best performance but oversized radiators can also be used. Noise from the external unit can limit areas for installation. £7,000-£11,000 per dwelling (taken from the Energy Saving Trust, TBC by supplier.) Air source systems are a good alternative solution to providing heating
Auvaniages	 All source systems are a good alternative solution to providing heating and hot water to well-insulated, low heat loss dwellings. They require additional space when compared to a gas boiler. Space for an external unit is needed, as is space for the hot water cylinder and internal pump. Heat pumps are generally quiet to run, however if a collection of pumps were used, this could generate a noticeable hum while in operation. Running costs between heat pumps and modern gas boilers are comparable.
Disadvantages	 Residents need to be made aware of the most efficient way of using a heat pump; as the low flow rates used by such a system means that room temperature cannot be changed as reactively as a conventional gas or oil boiler system. Will not perform well in homes that are left unoccupied and unheated for a long period of time. Back-up immersion heating can drastically increase running costs. Noise and aesthetic considerations limit installation opportunities.
Development feasibility	• ASHPs are considered a technically-viable option for this development scheme and will be included in the development proposals as the preferred LZC technology for achieving planning policy targets.
Geothermal	The transfer of latent heat from the ground to a compressed refrigerant gas to warm the water in a heating system. This includes ground source heat pumps. Heat can be collected through the use of either horizontally laid or vertically installed coils.
	Ground Source Heat Pumps (GSHPs) operate on the same principle as an Air Source Heat Pump (ASHP) in that they extract heat from a source (in this instance the ground) and compress this energy to increase temperature for space heating and hot water. Pipework is installed into the ground, either through coils or in bore holes and piles, circulating a mix of water and antifreeze to extract energy from the ground, where the year-round temperature is relatively consistent (approx. 10 \degree at 4 metres depth). This leads to a reliable source of heat for the building.
	Again, an electrically powered pump circulates the liquid and powers the compressor, however annual efficiencies for GSHPs tend to be higher than those of ASHPs.
Installation considerations	 Require appropriate ground conditions to sink piles/bore holes or excavate for coils (which also require a large area of land.) Decision between coils or piles can lead to significant extra cost. Need to consider whether low temperature output is fed through underfloor heating (most efficient) or oversized radiators. Similar to ASHPs, perform best in well-insulated buildings with a low heating demand. Electric immersion heater required for winter use. £11,000-£15,000 per dwelling dependent on the size of the system (taken from the Energy Saving Trust, TBC by supplier.)
Advantages	 Perform well in well-insulated buildings, with limited heating demand. More efficient than ASHPs.

Disadvantages	 The coils can be damaged by natural earthworks and by intensive gardening practices – occupants would need to be aware of the location of the coils for this system, and how to operate the system efficiently. Coils may also be damaged within the dwelling where the circuit is connected to the internal unit. Will not perform well in buildings that are left unoccupied and unheated for a long period of time. Back up immersion heating can drastically increase running costs. Large area of ground needed for coil installation.
Development feasibility	• GSHPs are not considered a technically-viable option for this development scheme as there are physical constraints in terms of ground conditions and area available for installation.
Biomass	Providing a heating system fuelled by plant based materials such as wood, crops or food waste. Biomass boilers generate heat for space heating and domestic hot water through the combustion of biofuels, such as woodchip, wood pellets or potentially biofuel or bio diesel. Biomass is considered to be virtually zero carbon. They can be used on an individual scale or for multiple dwellings as part of a district-heating network. A back-up heat source should be provided as consistent delivery of fuel is necessary for continued operation.
Installation considerations	 Biomass boilers are larger than conventional gas-fired boilers and also require what can be significant storage space for the fuel source. This needs to be considered at planning stage to ensure an appropriate plant room can be provided. Flue required to expel exhaust gases – design needs to be in line with the requirements of the Building Regulations. Need to consider whether fuel deliveries will be reliable and consistent to the location of the site (especially relevant in rural areas) and whether the plant room can be easily accessed by the delivery vehicle. £9,000-£21,000 per dwelling dependent on size (taken from Energy Saving Trust, TBC by Supplier).
Advantages	Considerable reduction in CO2 emissions.
Disadvantages	 Limited reduction in running costs compared to A-rated gas boilers, but at a substantially higher up-front cost. Plant room space required for boiler and storage. Dependent on consistent delivery of fuel. Ongoing maintenance costs (need to be cleaned regularly to remove ash.) Biomass is not considered a technically viable option for the development.
feasibility	scheme. The primary reason for this is down to the Development's location within the context of Inner City London and the negative environmental impact of high levels of NOx gases that are emitted from biomass boilers and the subsequent impact on local air quality. This is contrary to planning policies for air quality in London.

10.7 APPENDIX 6: MANUFACTURERS INFORMATION FOR ASHP

The Renewable Solutions Provider

Making a World of Difference

User Inputs

This page should be used to insert local energy information for a specific project

Seasonal COP gives a true representation of a heat pumps efficiency as it takes the units total efficiency into consideration, not just a snap shot at any given ambient temperature.

Misubishi Electric Ecodan units are inverter driven and can therefore modulate capacity to meet the required load making them seasonally efficient. The performance of heat pump systems is impossible to predict with certainly due to the variability of the climate and its subsequent effect on both heat supply and demand. This estimate is based upon the best available information but is given as guidance only and should not be considered as a guarantee

Air Conditioning | Commercial Heating Domestic Heating | Photovoltaics

